Menu Close

lim-x-0-8cot-x-9-sin-1-x-12-csc-x-4sin-1-x-




Question Number 173498 by blackmamba last updated on 12/Jul/22
    lim_(x→0)  ((8cot (x)+9 sin ((1/x)))/(12 csc (x)−4sin ((1/x)))) =?
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8cot}\:\left({x}\right)+\mathrm{9}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{12}\:\mathrm{csc}\:\left({x}\right)−\mathrm{4sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}\:=? \\ $$
Commented by blackmamba last updated on 13/Jul/22
 = lim_(x→0)  ((8cos x((x/(sin x)))+9x sin ((1/x)))/(((12x)/(sin x))−4x sin ((1/x))))   = ((8+0)/(12−0)) = (8/(12))=(2/3)
$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8cos}\:{x}\left(\frac{{x}}{\mathrm{sin}\:{x}}\right)+\mathrm{9}{x}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{\frac{\mathrm{12}{x}}{\mathrm{sin}\:{x}}−\mathrm{4}{x}\:\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)} \\ $$$$\:=\:\frac{\mathrm{8}+\mathrm{0}}{\mathrm{12}−\mathrm{0}}\:=\:\frac{\mathrm{8}}{\mathrm{12}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Answered by aleks041103 last updated on 12/Jul/22
L=(lim_(x→0) ((8cot(x))/(12csc(x))))(lim_(x→0) ((1+(9/8)tan(x)sin(1/x))/(1−(1/3)sin(x)sin(1/x))))=  =(2/3)cos(0).((1+(9/8).0.(sth finite))/(1−(1/3).0.(sth finite)))=(2/3)  ⇒Ans.=(2/3)
$${L}=\left(\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{8}{cot}\left({x}\right)}{\mathrm{12}{csc}\left({x}\right)}\right)\left(\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{1}+\frac{\mathrm{9}}{\mathrm{8}}{tan}\left({x}\right){sin}\left(\mathrm{1}/{x}\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}{sin}\left({x}\right){sin}\left(\mathrm{1}/{x}\right)}\right)= \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}{cos}\left(\mathrm{0}\right).\frac{\mathrm{1}+\frac{\mathrm{9}}{\mathrm{8}}.\mathrm{0}.\left({sth}\:{finite}\right)}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}.\mathrm{0}.\left({sth}\:{finite}\right)}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow{Ans}.=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *