Menu Close

calculate-I-0-2pi-cos-4x-cosx-sinx-and-J-0-2pi-sin-4x-cosx-sinx-dx-




Question Number 42501 by maxmathsup by imad last updated on 26/Aug/18
calculate I = ∫_0 ^(2π)    ((cos(4x))/(cosx +sinx))  and J = ∫_0 ^(2π)   ((sin(4x))/(cosx +sinx))dx
$${calculate}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left(\mathrm{4}{x}\right)}{{cosx}\:+{sinx}}\:\:{and}\:{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sin}\left(\mathrm{4}{x}\right)}{{cosx}\:+{sinx}}{dx} \\ $$
Commented by maxmathsup by imad last updated on 27/Aug/18
we have I = ∫_0 ^π   ((cos(4x))/(cosx +sinx)) dx + ∫_π ^(2π)    ((cos(4x))/(cosx +sinx)) but changement  x =π +t give  ∫_π ^(2π)   ((cos(4x))/(cosx +sinx))dx =∫_0 ^π    ((cos(4t))/(−cost −sint)) dt ⇒ I =0  the same method show that J =0
$${we}\:{have}\:{I}\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}\left(\mathrm{4}{x}\right)}{{cosx}\:+{sinx}}\:{dx}\:+\:\int_{\pi} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left(\mathrm{4}{x}\right)}{{cosx}\:+{sinx}}\:{but}\:{changement} \\ $$$${x}\:=\pi\:+{t}\:{give}\:\:\int_{\pi} ^{\mathrm{2}\pi} \:\:\frac{{cos}\left(\mathrm{4}{x}\right)}{{cosx}\:+{sinx}}{dx}\:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cos}\left(\mathrm{4}{t}\right)}{−{cost}\:−{sint}}\:{dt}\:\Rightarrow\:{I}\:=\mathrm{0} \\ $$$${the}\:{same}\:{method}\:{show}\:{that}\:{J}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *