Menu Close

If-x-y-R-x-2-xy-4-0-ax-2-b-y-2-x-4a-0-Find-the-minimum-of-a-2-1-2-b-2-




Question Number 108171 by ZiYangLee last updated on 15/Aug/20
If x,y∈R  x^2 −xy+4=0  ax^2 +(b+y^2 )x+4a=0  Find the minimum of a^2 +(1/2)b^2
$$\mathrm{If}\:{x},{y}\in\mathbb{R} \\ $$$${x}^{\mathrm{2}} −{xy}+\mathrm{4}=\mathrm{0} \\ $$$${ax}^{\mathrm{2}} +\left({b}+{y}^{\mathrm{2}} \right){x}+\mathrm{4}{a}=\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{b}^{\mathrm{2}} \\ $$
Answered by mr W last updated on 15/Aug/20
case 1: a=0  from (ii):  (b+y^2 )x=0  ⇒x=0 ⇒impossible, otherwise 4=0!  ⇒b+y^2 =0  from (i):  Δ=y^2 −4×4≥0  −b−16≥0  b≤−16  a^2 +(b^2 /2)=(b^2 /2)≥((16^2 )/2)=128    case 2: a≠0  Δ=y^2 −4×4≥0 ⇒y^2 ≥16⇒y≤−4 or ≥4  ax^2 −axy+4a=0   ...(iii)  (ii)−(iii):  (b+y^2 )x+axy=0  x(y^2 +ay+b)=0  ⇒x=0 ⇒impossible, otberwise 4=0!  ⇒y^2 +ay+b=0  Δ=a^2 −4b≥0  y_1 =((−a−(√Δ))/2), y_2 =((−a+(√Δ))/2)  case 2.1:(√())  y_2 =((−a+(√Δ))/2)≤−4  −a+(√Δ)≤−8  a≥8+(√Δ)  ⇒a≥8 and b≥16  ⇒a^2 +(b^2 /2)≥192  case 2.2:(√())  y_1 =((−a−(√Δ))/2)≥4  a(√())≤−8−(√Δ)  ⇒a≤−8 and b≤−16  ⇒a^2 +(b^2 /2)≥192  case 2.3:(√())  y_1 =((−a−(√Δ))/2)≤−4  a≥8−(√Δ)  y_2 =((−a+(√Δ))/2)≥4  a≤−(8−(√Δ))  ⇒a=0, b=−16
$${case}\:\mathrm{1}:\:{a}=\mathrm{0} \\ $$$${from}\:\left({ii}\right): \\ $$$$\left({b}+{y}^{\mathrm{2}} \right){x}=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{0}\:\Rightarrow{impossible},\:{otherwise}\:\mathrm{4}=\mathrm{0}! \\ $$$$\Rightarrow{b}+{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${from}\:\left({i}\right): \\ $$$$\Delta={y}^{\mathrm{2}} −\mathrm{4}×\mathrm{4}\geqslant\mathrm{0} \\ $$$$−{b}−\mathrm{16}\geqslant\mathrm{0} \\ $$$${b}\leqslant−\mathrm{16} \\ $$$${a}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{\mathrm{2}}=\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\geqslant\frac{\mathrm{16}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{128} \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{a}\neq\mathrm{0} \\ $$$$\Delta={y}^{\mathrm{2}} −\mathrm{4}×\mathrm{4}\geqslant\mathrm{0}\:\Rightarrow{y}^{\mathrm{2}} \geqslant\mathrm{16}\Rightarrow{y}\leqslant−\mathrm{4}\:{or}\:\geqslant\mathrm{4} \\ $$$${ax}^{\mathrm{2}} −{axy}+\mathrm{4}{a}=\mathrm{0}\:\:\:…\left({iii}\right) \\ $$$$\left({ii}\right)−\left({iii}\right): \\ $$$$\left({b}+{y}^{\mathrm{2}} \right){x}+{axy}=\mathrm{0} \\ $$$${x}\left({y}^{\mathrm{2}} +{ay}+{b}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{0}\:\Rightarrow{impossible},\:{otberwise}\:\mathrm{4}=\mathrm{0}! \\ $$$$\Rightarrow{y}^{\mathrm{2}} +{ay}+{b}=\mathrm{0} \\ $$$$\Delta={a}^{\mathrm{2}} −\mathrm{4}{b}\geqslant\mathrm{0} \\ $$$${y}_{\mathrm{1}} =\frac{−{a}−\sqrt{\Delta}}{\mathrm{2}},\:{y}_{\mathrm{2}} =\frac{−{a}+\sqrt{\Delta}}{\mathrm{2}} \\ $$$${case}\:\mathrm{2}.\mathrm{1}:\sqrt{} \\ $$$${y}_{\mathrm{2}} =\frac{−{a}+\sqrt{\Delta}}{\mathrm{2}}\leqslant−\mathrm{4} \\ $$$$−{a}+\sqrt{\Delta}\leqslant−\mathrm{8} \\ $$$${a}\geqslant\mathrm{8}+\sqrt{\Delta} \\ $$$$\Rightarrow{a}\geqslant\mathrm{8}\:{and}\:{b}\geqslant\mathrm{16} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\geqslant\mathrm{192} \\ $$$${case}\:\mathrm{2}.\mathrm{2}:\sqrt{} \\ $$$${y}_{\mathrm{1}} =\frac{−{a}−\sqrt{\Delta}}{\mathrm{2}}\geqslant\mathrm{4} \\ $$$${a}\sqrt{}\leqslant−\mathrm{8}−\sqrt{\Delta} \\ $$$$\Rightarrow{a}\leqslant−\mathrm{8}\:{and}\:{b}\leqslant−\mathrm{16} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\geqslant\mathrm{192} \\ $$$${case}\:\mathrm{2}.\mathrm{3}:\sqrt{} \\ $$$${y}_{\mathrm{1}} =\frac{−{a}−\sqrt{\Delta}}{\mathrm{2}}\leqslant−\mathrm{4} \\ $$$${a}\geqslant\mathrm{8}−\sqrt{\Delta} \\ $$$${y}_{\mathrm{2}} =\frac{−{a}+\sqrt{\Delta}}{\mathrm{2}}\geqslant\mathrm{4} \\ $$$${a}\leqslant−\left(\mathrm{8}−\sqrt{\Delta}\right) \\ $$$$\Rightarrow{a}=\mathrm{0},\:{b}=−\mathrm{16} \\ $$
Commented by mr W last updated on 15/Aug/20
answer is 128
$${answer}\:{is}\:\mathrm{128} \\ $$
Commented by ZiYangLee last updated on 15/Aug/20
answer is ((128)/9)
$$\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{128}}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *