Menu Close

The-sixth-term-of-an-A-P-is-2-its-common-difference-is-greater-than-one-Find-the-value-of-the-common-difference-so-that-the-product-of-the-first-fourth-and-fifth-terms-is-the-greatest-




Question Number 108854 by ZiYangLee last updated on 19/Aug/20
The sixth term of an A.P. is 2, its  common difference is greater than  one. Find the value of the common  difference so that the product of the  first, fourth and fifth terms is the  greatest.
$$\mathrm{The}\:\mathrm{sixth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.\:\mathrm{is}\:\mathrm{2},\:\mathrm{its} \\ $$$$\mathrm{common}\:\mathrm{difference}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\mathrm{one}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first},\:\mathrm{fourth}\:\mathrm{and}\:\mathrm{fifth}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{greatest}. \\ $$
Answered by $@y@m last updated on 20/Aug/20
Let a be the first term and   x be the common difference.  a+5x=2  a=2−5x.....(1)  Let y=a(a+3x)(a+4x)  ⇒y=(2−5x)(2−2x)(2−x)   {from (1)                                            ..........(√)(2)     =(4−14x+10x^2 )(2−x)    =8−4x−28x+14x^2 +20x^2 −10x^3       y=−10x^3 +34x^2 −32x+8 .....(3)  (dy/dx)=−30x^2 +68x−32 ....(4)  For maxima or minima,  (dy/dx)=0  ⇒−30x^2 +68x−32=0  ⇒15x^2 −34x+16=0  x=((34±(√(1156−960)))/(30))  x=((34±14)/(30))= ((48)/(30)), ((20)/(30)) =(8/5), (2/3)  ATQ, x>1  ∴x=(8/5)  Now,  (d^2 y/dx^2 ) = −60x+68  Now,  (d^2 y/dx^2 ) _(at x=(8/5)) =−60×(8/5)+68=−28<0  ∴ y is maximum when x=(8/5)=1.6
$${Let}\:{a}\:{be}\:{the}\:{first}\:{term}\:{and}\: \\ $$$${x}\:{be}\:{the}\:{common}\:{difference}. \\ $$$${a}+\mathrm{5}{x}=\mathrm{2} \\ $$$${a}=\mathrm{2}−\mathrm{5}{x}…..\left(\mathrm{1}\right) \\ $$$${Let}\:{y}={a}\left({a}+\mathrm{3}{x}\right)\left({a}+\mathrm{4}{x}\right) \\ $$$$\Rightarrow{y}=\left(\mathrm{2}−\mathrm{5}{x}\right)\left(\mathrm{2}−\mathrm{2}{x}\right)\left(\mathrm{2}−{x}\right)\:\:\:\left\{{from}\:\left(\mathrm{1}\right)\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……….\sqrt{}\left(\mathrm{2}\right) \\ $$$$\:\:\:=\left(\mathrm{4}−\mathrm{14}{x}+\mathrm{10}{x}^{\mathrm{2}} \right)\left(\mathrm{2}−{x}\right) \\ $$$$\:\:=\mathrm{8}−\mathrm{4}{x}−\mathrm{28}{x}+\mathrm{14}{x}^{\mathrm{2}} +\mathrm{20}{x}^{\mathrm{2}} −\mathrm{10}{x}^{\mathrm{3}} \\ $$$$\:\:\:\:{y}=−\mathrm{10}{x}^{\mathrm{3}} +\mathrm{34}{x}^{\mathrm{2}} −\mathrm{32}{x}+\mathrm{8}\:…..\left(\mathrm{3}\right) \\ $$$$\frac{{dy}}{{dx}}=−\mathrm{30}{x}^{\mathrm{2}} +\mathrm{68}{x}−\mathrm{32}\:….\left(\mathrm{4}\right) \\ $$$${For}\:{maxima}\:{or}\:{minima}, \\ $$$$\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow−\mathrm{30}{x}^{\mathrm{2}} +\mathrm{68}{x}−\mathrm{32}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{15}{x}^{\mathrm{2}} −\mathrm{34}{x}+\mathrm{16}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{34}\pm\sqrt{\mathrm{1156}−\mathrm{960}}}{\mathrm{30}} \\ $$$${x}=\frac{\mathrm{34}\pm\mathrm{14}}{\mathrm{30}}=\:\frac{\mathrm{48}}{\mathrm{30}},\:\frac{\mathrm{20}}{\mathrm{30}}\:=\frac{\mathrm{8}}{\mathrm{5}},\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${ATQ},\:{x}>\mathrm{1} \\ $$$$\therefore{x}=\frac{\mathrm{8}}{\mathrm{5}} \\ $$$${Now},\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:−\mathrm{60}{x}+\mathrm{68} \\ $$$${Now},\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:_{{at}\:{x}=\frac{\mathrm{8}}{\mathrm{5}}} =−\mathrm{60}×\frac{\mathrm{8}}{\mathrm{5}}+\mathrm{68}=−\mathrm{28}<\mathrm{0} \\ $$$$\therefore\:{y}\:{is}\:{maximum}\:{when}\:{x}=\frac{\mathrm{8}}{\mathrm{5}}=\mathrm{1}.\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *