Menu Close

Question-109016




Question Number 109016 by mathdave last updated on 20/Aug/20
Answered by Dwaipayan Shikari last updated on 20/Aug/20
∫(1/( (√(1−sinx))))dx  ∫(1/(cos(x/2)−sin(x/2)))dx  (1/( (√2)))∫(1/(cos((x/2)+(π/4))))dx  (1/( (√2)))∫sec((x/2)+(π/4))dx  (2/( (√2)))∫secudu                                           ((x/2)+(π/4)=u  ,  (1/2)  =(du/dx)  (√2)log(secu+tanu)+C  (√2) log(sec((x/2)+(π/4))+tan((x/2)+(π/4)))+C
$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{sinx}}}{dx} \\ $$$$\int\frac{\mathrm{1}}{{cos}\frac{{x}}{\mathrm{2}}−{sin}\frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}}{{cos}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)}{dx} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int{sec}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right){dx} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}\int{secudu}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}={u}\:\:,\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\:=\frac{{du}}{{dx}}\right. \\ $$$$\sqrt{\mathrm{2}}{log}\left({secu}+{tanu}\right)+{C} \\ $$$$\sqrt{\mathrm{2}}\:{log}\left({sec}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)+{tan}\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\right)+{C} \\ $$
Commented by $@y@m last updated on 20/Aug/20
Wonderful!
$${Wonderful}! \\ $$
Answered by mathmax by abdo last updated on 20/Aug/20
I =∫ (dx/( (√(1−sinx))))  ⇒I =∫  (dx/( (√(1−cos((π/2)−x))))) =∫(dx/( (√(2sin^2 ((π/4)−(x/2))))))  =(1/( (√2)))∫  (dx/(sin((π/4)−(x/2)))) =_((π/4)−(x/2)=u)   (1/( (√2))) ∫   ((−2du)/(sinu)) =−(√2)∫  (du/(sinu))  =_(tan((u/2))=α)   −(√2)∫  ((2dα)/((1+α^2 )((2α)/(1+α^2 )))) =−(√2)∫ (dα/α) =−(√2)ln∣α∣ +C  =−(√2)ln∣tan((1/2)((π/4)−(x/2))∣ +C =−(√2)ln∣tan((π/8)−(x/4))∣ +C
$$\mathrm{I}\:=\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{sinx}}}\:\:\Rightarrow\mathrm{I}\:=\int\:\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}}\:=\int\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{\mathrm{x}}{\mathrm{2}}\right)}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\:\:\frac{\mathrm{dx}}{\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\frac{\mathrm{x}}{\mathrm{2}}\right)}\:=_{\frac{\pi}{\mathrm{4}}−\frac{\mathrm{x}}{\mathrm{2}}=\mathrm{u}} \:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\int\:\:\:\frac{−\mathrm{2du}}{\mathrm{sinu}}\:=−\sqrt{\mathrm{2}}\int\:\:\frac{\mathrm{du}}{\mathrm{sinu}} \\ $$$$=_{\mathrm{tan}\left(\frac{\mathrm{u}}{\mathrm{2}}\right)=\alpha} \:\:−\sqrt{\mathrm{2}}\int\:\:\frac{\mathrm{2d}\alpha}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)\frac{\mathrm{2}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}\:=−\sqrt{\mathrm{2}}\int\:\frac{\mathrm{d}\alpha}{\alpha}\:=−\sqrt{\mathrm{2}}\mathrm{ln}\mid\alpha\mid\:+\mathrm{C} \\ $$$$=−\sqrt{\mathrm{2}}\mathrm{ln}\mid\mathrm{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{4}}−\frac{\mathrm{x}}{\mathrm{2}}\right)\mid\:+\mathrm{C}\:=−\sqrt{\mathrm{2}}\mathrm{ln}\mid\mathrm{tan}\left(\frac{\pi}{\mathrm{8}}−\frac{\mathrm{x}}{\mathrm{4}}\right)\mid\:+\mathrm{C}\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *