Menu Close

Find-the-value-s-of-a-b-and-c-if-x-a-x-2020-1-x-b-x-c-where-a-b-and-c-are-natural-numbers-




Question Number 109029 by nimnim last updated on 20/Aug/20
Find the value(s) of a,b and c  if:  (x+a)(x+2020)+1=(x+b)(x+c)  where a,b and c are natural numbers.
$${Find}\:{the}\:{value}\left({s}\right)\:{of}\:{a},{b}\:{and}\:{c}\:\:{if}: \\ $$$$\left({x}+{a}\right)\left({x}+\mathrm{2020}\right)+\mathrm{1}=\left({x}+{b}\right)\left({x}+{c}\right) \\ $$$${where}\:{a},{b}\:{and}\:{c}\:{are}\:{natural}\:{numbers}. \\ $$
Answered by floor(10²Eta[1]) last updated on 21/Aug/20
x^2 +(2020+a)x+2020a+1=x^2 +(b+c)x+bc  ⇒2020+a=b+c  ⇒2020a+1=bc  a=b+c−2020  2020(b+c−2020)+1=bc  2020b+2020c−2020^2 +1=bc  bc−2020b−2020c+2020^2 =1  (b−2020)(c−2020)=1  the only ways we can factor 1 are  1.1 or (−1)(−1)  I case:  b−2020=1=c−2020  ⇒b=c=2021∴a=2022  II case:  b−2020=−1=c−2020  ⇒b=c=2019∴a=2018    so all solutions a, b, c are:  (2022, 2021, 2021), (2018, 2019, 2019)
$$\mathrm{x}^{\mathrm{2}} +\left(\mathrm{2020}+\mathrm{a}\right)\mathrm{x}+\mathrm{2020a}+\mathrm{1}=\mathrm{x}^{\mathrm{2}} +\left(\mathrm{b}+\mathrm{c}\right)\mathrm{x}+\mathrm{bc} \\ $$$$\Rightarrow\mathrm{2020}+\mathrm{a}=\mathrm{b}+\mathrm{c} \\ $$$$\Rightarrow\mathrm{2020a}+\mathrm{1}=\mathrm{bc} \\ $$$$\mathrm{a}=\mathrm{b}+\mathrm{c}−\mathrm{2020} \\ $$$$\mathrm{2020}\left(\mathrm{b}+\mathrm{c}−\mathrm{2020}\right)+\mathrm{1}=\mathrm{bc} \\ $$$$\mathrm{2020b}+\mathrm{2020c}−\mathrm{2020}^{\mathrm{2}} +\mathrm{1}=\mathrm{bc} \\ $$$$\mathrm{bc}−\mathrm{2020b}−\mathrm{2020c}+\mathrm{2020}^{\mathrm{2}} =\mathrm{1} \\ $$$$\left(\mathrm{b}−\mathrm{2020}\right)\left(\mathrm{c}−\mathrm{2020}\right)=\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{only}\:\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{factor}\:\mathrm{1}\:\mathrm{are} \\ $$$$\mathrm{1}.\mathrm{1}\:\mathrm{or}\:\left(−\mathrm{1}\right)\left(−\mathrm{1}\right) \\ $$$$\mathrm{I}\:\mathrm{case}: \\ $$$$\mathrm{b}−\mathrm{2020}=\mathrm{1}=\mathrm{c}−\mathrm{2020} \\ $$$$\Rightarrow\mathrm{b}=\mathrm{c}=\mathrm{2021}\therefore\mathrm{a}=\mathrm{2022} \\ $$$$\mathrm{II}\:\mathrm{case}: \\ $$$$\mathrm{b}−\mathrm{2020}=−\mathrm{1}=\mathrm{c}−\mathrm{2020} \\ $$$$\Rightarrow\mathrm{b}=\mathrm{c}=\mathrm{2019}\therefore\mathrm{a}=\mathrm{2018} \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\mathrm{are}: \\ $$$$\left(\mathrm{2022},\:\mathrm{2021},\:\mathrm{2021}\right),\:\left(\mathrm{2018},\:\mathrm{2019},\:\mathrm{2019}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 22/Aug/20
O_W ^W  !_! ^! , great!...Thanks floor Sir!
$$\underset{\mathrm{W}} {\overset{\mathrm{W}} {\mathrm{O}}}\:\underset{!} {\overset{!} {!}},\:{great}!…\mathcal{T}{hanks}\:{floor}\:\mathcal{S}{ir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *