Question Number 43623 by math khazana by abdo last updated on 12/Sep/18
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$
Commented by maxmathsup by imad last updated on 13/Sep/18
$${let}\:{decompose}\:{F}\left({t}\right)=\frac{\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}\:{we}\:{have}\:{F}\left({t}\right)=\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\:−\sqrt{\mathrm{2}}{t}\right)\left({t}^{\mathrm{2}} +\mathrm{1}+\sqrt{\mathrm{2}}{t}\right)}\:=\frac{{at}\:+{b}}{\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\right)}\:+\frac{{ct}\:+{d}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left(−{t}\right)={F}\left({t}\right)\:\Rightarrow\frac{−{at}\:+{b}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{−{ct}\:+{d}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:={F}\left({t}\right)\:\Rightarrow{c}=−{a}\:\:{and}\:{b}={d}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{{at}\:+{b}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\frac{−{at}\:+{b}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{1}\:=\mathrm{2}{b}\:\Rightarrow{b}=\mathrm{0}\:\:\Rightarrow{F}\left({t}\right)=\frac{{at}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:−\frac{{at}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{{a}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:−\frac{{a}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:=\left(\frac{\mathrm{2}+\sqrt{\mathrm{2}}−\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}\right){a}\:=\sqrt{\mathrm{2}}{a}\:\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:\frac{{t}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:−\frac{{t}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\right\}\Rightarrow \\ $$$$\int\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\left\{\:\:\int\:\:\:\frac{\mathrm{2}{t}−\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}{dt}\:\:−\int\:\:\frac{\mathrm{2}{t}\:+\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}{dt}\right\} \\ $$$$\Rightarrow\mathrm{4}\sqrt{\mathrm{2}}\:\int\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:={ln}\mid{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\mid−{ln}\mid{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}+\mathrm{1}\mid\:+\sqrt{\mathrm{2}}\:\:\int\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:−\sqrt{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$${but}\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:=\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}{t}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}}\:=\int\:\frac{{dt}}{\left({t}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=_{{t}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:=\frac{{u}}{\:\sqrt{\mathrm{2}}}} \:\:\:\:\:\int\:\:\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{\mathrm{2}}{arctan}\left({u}\right)=\sqrt{\mathrm{2}}{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)\:{also} \\ $$$$\int\:\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:=\:\sqrt{\mathrm{2}}{arctan}\left({t}\sqrt{\mathrm{2}}+\mathrm{1}\right)\:\Rightarrow \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\int\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:={ln}\mid\frac{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\mid\:+\mathrm{2}\:{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)−\mathrm{2}\:{arctan}\left({t}\sqrt{\mathrm{2}}+\mathrm{1}\right)\:+{c}\:\Rightarrow \\ $$$$\int\:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\mid\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)−{arctan}\left({t}\sqrt{\mathrm{2}}+\mathrm{1}\right)\right\}\:+{c}\Rightarrow \\ $$$${f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:=\left[\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\mid_{\mathrm{0}} ^{{x}} \:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left[{arctan}\left({t}\sqrt{\mathrm{2}}−\mathrm{1}\right)−{arctan}\left({t}\sqrt{\mathrm{2}}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{{x}} \right. \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}\mid\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:{arctan}\left({x}\sqrt{\mathrm{2}}−\mathrm{1}\right)−{arctan}\left({x}\sqrt{\mathrm{2}}+\mathrm{1}\right)\:+\frac{\pi}{\mathrm{2}}\right\} \\ $$$$ \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 13/Sep/18
$${error}\:{at}\:{line}\:\mathrm{9} \\ $$$$\mathrm{4}\sqrt{\mathrm{2}}\:\int\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:={ln}\mid{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\mid−{ln}\mid{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}\mid+\sqrt{\mathrm{2}}\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}\:+\mathrm{1}}\:+\sqrt{\mathrm{2}}\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{t}\:+\mathrm{1}} \\ $$$$\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}\mid\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\:{arctan}\left({x}\sqrt{\mathrm{2}}−\mathrm{1}\right)\:+{arctan}\left({x}\sqrt{\mathrm{2}}+\mathrm{1}\right)\:\right\}. \\ $$
Commented by maxmathsup by imad last updated on 13/Sep/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} }\:={lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left\{\frac{\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}\right\}\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:. \\ $$$$\: \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Sep/18
$$\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\int\frac{\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)−\left(\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)}{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({t}−\frac{\mathrm{1}}{{t}}\right)}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({t}+\frac{\mathrm{1}}{{t}}\right)}{\left({t}+\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} −\mathrm{2}} \\ $$$${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({t}−\frac{\mathrm{1}}{{t}}\right)}{\left({t}−\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\mathrm{1}}{{t}}}{\:\sqrt{\mathrm{2}}}\right)+{c} \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({t}+\frac{\mathrm{1}}{{t}}\right)}{\left({t}+\frac{\mathrm{1}}{{t}}\right)^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} } \\ $$$${formula}\int\frac{{dy}}{{y}^{\mathrm{2}} −{a}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{a}}\int\frac{\left({y}+{a}\right)−\left({y}−{a}\right)}{\left.\left({y}+{a}\right){y}−{a}\right)}{dy} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{a}}\left[\int\frac{{dy}}{{y}−{a}}−\int\frac{{dy}}{{y}+{a}}\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{a}}{ln}\mid\frac{{y}−{a}}{{y}+{a}}\mid+{c}_{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\mid\frac{{t}+\frac{\mathrm{1}}{{t}}−\sqrt{\mathrm{2}}}{{t}+\frac{\mathrm{1}}{{t}}+\sqrt{\mathrm{2}}}\mid \\ $$$${so}\:{ans}\:{is}\:{I}_{\mathrm{1}} −{I}_{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\mathrm{1}}{{t}}}{\:\sqrt{\mathrm{2}}}\right)−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{t}+\frac{\mathrm{1}}{{t}}−\sqrt{\mathrm{2}}}{{t}+\frac{\mathrm{1}}{{t}}+\sqrt{\mathrm{2}}}\mid+{c} \\ $$$${so} \\ $$$$\int_{\mathrm{0}} ^{{x}} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{x}−\frac{\mathrm{1}}{{x}}}{\:\sqrt{\mathrm{2}}}\right)−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{x}+\frac{\mathrm{1}}{{x}}−\sqrt{\mathrm{2}}}{{x}+\frac{\mathrm{1}}{{x}}+\sqrt{\mathrm{2}}}\mid\right]− \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(−\infty\right)−\mathrm{0}\right. \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left(−\frac{\Pi}{\mathrm{2}}\right) \\ $$$${ans}\:{is}\left[\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{x}−\frac{\mathrm{1}}{{x}}}{\:\sqrt{\mathrm{2}}}\right)−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\mid\frac{{x}+\frac{\mathrm{1}}{{x}}−\sqrt{\mathrm{2}}}{{x}+\frac{\mathrm{1}}{{x}}+\sqrt{\mathrm{2}}}\mid+\frac{\Pi}{\mathrm{4}\sqrt{\mathrm{2}}}\right. \\ $$$$ \\ $$$$ \\ $$