Menu Close

Question-175042




Question Number 175042 by peter frank last updated on 17/Aug/22
Answered by Frix last updated on 18/Aug/22
∫((a^2 sin^2  x +b^2 cos^2  x)/(a^4 sin^4  x +b^4 cos^4  x))dx=  =∫(((1+tan^2  x)(b^2 +a^2 tan^2  x))/(b^4 +a^4 tan^4  x))dx=  =∫((b^2 +a^2 tan^2  x)/((b^4 +a^4 tan^4  x)))dtan x=  =∫((a^2 t^2 +b^2 )/(a^4 t^4 +b^4 ))dt=  =(1/2)∫(dt/(a^2 t^2 −ab(√2)t+b^2 ))+(1/2)∫(dt/(a^2 t^2 +ab(√2)t+b^2 ))=  =((√2)/(2ab))(tan^(−1)  ((a(√2)t−b)/b)+tan^(−1)  ((a(√2)t+b)/b))=  =−((√2)/(2ab))tan^(−1)  ((ab(√2)t)/(a^2 t^2 −b^2 )) =  =−((√2)/(2ab))tan^(−1)  ((ab(√2)sin x cos x)/(a^2 sin^2  x −b^2 cos^2  x)) +C
$$\int\frac{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{x}\:+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x}}{{a}^{\mathrm{4}} \mathrm{sin}^{\mathrm{4}} \:{x}\:+{b}^{\mathrm{4}} \mathrm{cos}^{\mathrm{4}} \:{x}}{dx}= \\ $$$$=\int\frac{\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right)\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:{x}\right)}{{b}^{\mathrm{4}} +{a}^{\mathrm{4}} \mathrm{tan}^{\mathrm{4}} \:{x}}{dx}= \\ $$$$=\int\frac{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:{x}}{\left({b}^{\mathrm{4}} +{a}^{\mathrm{4}} \mathrm{tan}^{\mathrm{4}} \:{x}\right)}{d}\mathrm{tan}\:{x}= \\ $$$$=\int\frac{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{a}^{\mathrm{4}} {t}^{\mathrm{4}} +{b}^{\mathrm{4}} }{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} −{ab}\sqrt{\mathrm{2}}{t}+{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +{ab}\sqrt{\mathrm{2}}{t}+{b}^{\mathrm{2}} }= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{ab}}\left(\mathrm{tan}^{−\mathrm{1}} \:\frac{{a}\sqrt{\mathrm{2}}{t}−{b}}{{b}}+\mathrm{tan}^{−\mathrm{1}} \:\frac{{a}\sqrt{\mathrm{2}}{t}+{b}}{{b}}\right)= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{ab}}\mathrm{tan}^{−\mathrm{1}} \:\frac{{ab}\sqrt{\mathrm{2}}{t}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}{ab}}\mathrm{tan}^{−\mathrm{1}} \:\frac{{ab}\sqrt{\mathrm{2}}\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:{x}\:−{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:{x}}\:+{C} \\ $$
Commented by peter frank last updated on 18/Aug/22
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$
Commented by Tawa11 last updated on 20/Aug/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *