Question Number 44002 by maxmathsup by imad last updated on 19/Sep/18
$${calculate}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{arctanx}}{\mathrm{1}+{x}}\:\:\:{and}\:{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{arctanx}}{\mathrm{1}−{x}}{dx} \\ $$
Commented by maxmathsup by imad last updated on 24/Sep/18
$${let}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}}{dx}\:\Rightarrow{I}\:={f}\left(\mathrm{1}\right)\:{we}\:{have} \\ $$$${f}^{'} \left(\alpha\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{x}\:{dx}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\alpha^{\mathrm{2}} {x}^{\mathrm{2}} \right)}\:=_{\alpha{x}\:={t}} \:\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:\:\:\:\frac{{tdt}}{\alpha\left(\mathrm{1}+\frac{{t}}{\alpha}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:\:\frac{{tdt}}{\left({t}+\alpha\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:{let}\:{decompose}\:{F}\left({t}\right)\:=\:\frac{{t}}{\left({t}+\alpha\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$$${F}\left({t}\right)\:=\:\frac{{a}}{{t}+\alpha}\:+\frac{{bt}\:+{c}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:\:{we}\:{have}\:{a}={lim}_{{t}\rightarrow−\alpha} \left({t}+\alpha\right){F}\left({t}\right)=\frac{−\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$${lim}_{{t}\rightarrow+\infty} {t}\:{F}\left({t}\right)\:=\mathrm{0}\:={a}+{b}\:\Rightarrow{b}\:=\frac{\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\Rightarrow{F}\left({t}\right)=−\frac{\alpha}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)\left({t}+\alpha\right)}\:+\frac{\frac{\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }{t}\:+{c}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{0}\right)=\mathrm{0}\:=\:−\frac{\alpha}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)\alpha}\:+{c}\:\Rightarrow{c}\:=\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\:−\frac{\alpha}{\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)\left({t}+\alpha\right)}\:+\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\:\frac{\alpha{t}\:+\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${f}^{'} \left(\alpha\right)\:=\frac{−\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:\:\:\frac{{dt}}{{t}+\alpha}\:\:+\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:\frac{\alpha{t}\:+\mathrm{1}}{{t}^{\mathrm{2}\:} +\mathrm{1}}{dt}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:\frac{{dt}}{{t}+\alpha}\:=\left[{ln}\mid{t}+\alpha\mid\right]_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:={ln}\mid\frac{\alpha\pi}{\mathrm{4}}+\alpha\mid−{ln}\mid\alpha\mid\:={ln}\mid\mathrm{1}+\frac{\pi}{\mathrm{4}}\mid\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:\:\frac{\alpha{t}\:+\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:{dt}\:=\frac{\alpha}{\mathrm{2}}\left[{ln}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\frac{\alpha\pi}{\mathrm{4}}} \:\:+{arctan}\left(\frac{\alpha\pi}{\mathrm{4}}\right) \\ $$$$=\frac{\alpha}{\mathrm{2}}{ln}\left(\mathrm{1}+\frac{\alpha^{\mathrm{2}} \pi^{\mathrm{2}} }{\mathrm{16}}\right)\:+{arctan}\left(\frac{\alpha\pi}{\mathrm{4}}\right)\:\Rightarrow \\ $$$${f}^{'} \left(\alpha\right)\:=\frac{−\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }{ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{4}}\right)\:+\:\frac{\alpha}{\mathrm{2}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)}{ln}\left(\mathrm{1}+\frac{\alpha^{\mathrm{2}} \pi^{\mathrm{2}} }{\mathrm{16}}\right)\:+\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }{arctan}\left(\frac{\alpha\pi}{\mathrm{4}}\right)\:\Rightarrow \\ $$$${f}\left(\alpha\right)\:=−{ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{4}}\right)\:\int_{\mathrm{0}} ^{\alpha} \:\:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\alpha} \:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{ln}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} \pi^{\mathrm{2}} }{\mathrm{16}}\right){dx}\:+\int_{\mathrm{0}} ^{\alpha} \:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{arctan}\left(\frac{\pi{x}}{\mathrm{4}}\right){dx} \\ $$$$+{c}\:\left(\:{c}={f}\left(\mathrm{0}\right)=\mathrm{0}\right)\:\Rightarrow \\ $$$${f}\left(\mathrm{1}\right)\:=−{ln}\left(\mathrm{1}+\frac{\pi}{\mathrm{4}}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{ln}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} \pi^{\mathrm{2}} }{\mathrm{16}}\right){dx} \\ $$$$+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctan}\left(\frac{\pi{x}}{\mathrm{4}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:….{be}\:{continued}… \\ $$$$ \\ $$