Question Number 175110 by nadovic last updated on 19/Aug/22

$$\mathrm{Prove}\:\mathrm{that}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}=\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$
Commented by kaivan.ahmadi last updated on 19/Aug/22

$$\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}}\\{{a}\:\:\:\:\:{b}\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} \:\:\:{b}^{\mathrm{2}} \:\:\:{c}^{\mathrm{2}} }\end{vmatrix}\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}}\\{{a}\:\:\:\:\:{b}\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} \:\:{b}^{\mathrm{2}} \:\:\:{c}^{\mathrm{2}} }\end{vmatrix}= \\ $$$$\left({bc}^{\mathrm{2}} +{ca}^{\mathrm{2}} +{ab}^{\mathrm{2}} \right)−\left({ba}^{\mathrm{2}} +{ac}^{\mathrm{2}} +{cb}^{\mathrm{2}} \right) \\ $$$$={c}\left({bc}+{a}^{\mathrm{2}} −{ac}−{b}^{\mathrm{2}} \right)−{ab}\left({a}−{b}\right) \\ $$$$={c}\left({c}\left({b}−{a}\right)+\left({a}−{b}\right)\left({a}+{b}\right)\right)−{ab}\left({a}−{b}\right) \\ $$$$=\left({a}−{b}\right)\left(−{c}^{\mathrm{2}} +{ac}+{bc}−{ab}\right) \\ $$$$=\left({a}−{b}\right)\left({c}\left({a}−{c}\right)+{b}\left({c}−{a}\right)\right) \\ $$$$=\left({a}−{b}\right)\left(\left({c}−{a}\right)\left({b}−{c}\right)\right)= \\ $$$$\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$${note}\:{that}\:{this}\:{is}\:{a}\:{Vandermonde} \\ $$$${determinant}. \\ $$$${In}\:{general}\:{case} \\ $$$$\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:…\:\:\:\:\mathrm{1}}\\{{a}_{\mathrm{1}\:\:\:} \:{a}_{\mathrm{2}\:\:} …\:\:\:\:\:{a}_{{n}} }\\{\vdots\:\:\:\vdots\:\:\:\:\vdots}\\{{a}_{\mathrm{1}} ^{{n}−\mathrm{1}} \:\:…\:\:\:\:\:{a}_{{n}} ^{{n}−\mathrm{1}} \:}\end{vmatrix}=\underset{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {\prod}\left({a}_{{j}} −{a}_{{i}} \right) \\ $$
Commented by Tawa11 last updated on 19/Aug/22

$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by puissant last updated on 21/Aug/22

$${Vandermonde}\:{method} \\ $$
Answered by Rasheed.Sindhi last updated on 19/Aug/22

$$\mathrm{Prove}\:\mathrm{that}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{{a}}&{{b}}&{{c}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}^{\mathrm{2}} }\end{vmatrix}=\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\overline {\:\:\:\:\:\:\:\:\underline{\mid}\:\underline{\frac{}{}\boldsymbol{\mathrm{Through}}\:\boldsymbol{\mathrm{properties}}\frac{}{}\:\mid}\:\:\:\:\:\:\:} \\ $$$$=\begin{vmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\mathrm{0}}\\{{a}}&{{b}−{a}}&{{c}−{a}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }&{{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }\end{vmatrix}\underset{\mathrm{C3}−\mathrm{C1}} {\mathrm{C2}−\mathrm{C1}} \\ $$$$ \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\begin{vmatrix}{\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\mathrm{0}}\\{{a}}&{\:\:\:\:\mathrm{1}}&{\:\:\:\mathrm{1}}\\{{a}^{\mathrm{2}} }&{{b}+{a}}&{{c}+{a}}\end{vmatrix} \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\centerdot\mathrm{1}\left\{\mathrm{1}\left({c}+{a}\right)−\mathrm{1}\left({b}+{a}\right)\right\} \\ $$$$=\left({b}−{a}\right)\left({c}−{a}\right)\left({c}−{b}\right) \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$
Commented by puissant last updated on 21/Aug/22

$${Great} \\ $$
Commented by Rasheed.Sindhi last updated on 21/Aug/22

$$\mathcal{T}{hanks}\:{sir}! \\ $$
Answered by Rajpurohith last updated on 10/Jun/23

$${Apply}\:{the}\:{operation}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \:{and}\:{C}_{\mathrm{2}} \rightarrow{C}_{\mathrm{2}} −{C}_{\mathrm{3}} \\ $$$${The}\:{determinant}\:{reduces}\:{to}, \\ $$$$\begin{vmatrix}{\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{{a}−{b}\:\:\:\:\:\:\:\:\:{b}−{c}\:\:\:\:\:\:\:\:{c}}\\{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \:\:\:\:\:{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \:\:\:\:\:{c}^{\mathrm{2}} }\end{vmatrix}=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:{c}}\\{{a}+{b}\:\:\:\:{b}+{c}\:\:\:{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${This}\:{is}\:{by}\:{taking}\:{the}\:{common}\:{factors}\:{from}\:{C}_{\mathrm{1}} \:\&\:{C}_{\mathrm{2}} \\ $$$${and}\:{operate}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:{c}}\\{{a}−{c}\:\:\:\:{b}+{c}\:\:\:\:{c}^{\mathrm{2}} }\end{vmatrix} \\ $$$${expanding}\:{along}\:{the}\:{first}\:{row}, \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right) \\ $$$$ \\ $$$$ \\ $$