Menu Close

1-1-x-dx-




Question Number 175191 by ajfour last updated on 22/Aug/22
∫(√(1−(1/x)))dx=?
11xdx=?
Commented by ajfour last updated on 22/Aug/22
Thank you both sirs.
Thankyoubothsirs.
Answered by Ar Brandon last updated on 22/Aug/22
I=∫(√(1−(1/x)))dx=∫(√((x−1)/x))dx=∫((x−1)/( (√(x^2 −x))))dx    =(1/2)∫((2x−1)/( (√(x^2 −x))))dx−(1/2)∫(1/( (√((x−(1/2))^2 −(1/4)))))dx    =(√(x^2 −x))−(1/2)arcosh(2x−1)+C    =(√(x^2 −x))−(1/2)ln∣(2x−1)+(√(4x^2 −4x))∣+C
I=11xdx=x1xdx=x1x2xdx=122x1x2xdx121(x12)214dx=x2x12arcosh(2x1)+C=x2x12ln(2x1)+4x24x+C
Answered by MJS_new last updated on 22/Aug/22
∫(√(1−(1/x)))dx=∫(√((x−1)/x))dx=       [t=(√(x/(x−1))) → dx=−2(x−1)^2 (√(x/(x−1)))dt]  =−2∫(dt/((t^2 −1)^2 ))=(t/(t^2 −1))+(1/2)ln ((t−1)/(t+1)) =  =(√(x(x−1)))+ln ((√x)−(√(x−1))) +C
11xdx=x1xdx=[t=xx1dx=2(x1)2xx1dt]=2dt(t21)2=tt21+12lnt1t+1==x(x1)+ln(xx1)+C

Leave a Reply

Your email address will not be published. Required fields are marked *