Question Number 44397 by Necxx last updated on 28/Sep/18
$${If}\:{x}\:{is}\:{nearly}\:{equal}\:{to}\:\mathrm{1}\:{then} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}= \\ $$
Commented by MrW3 last updated on 28/Sep/18
$${if}\:{x}\approx\mathrm{1} \\ $$$$\Rightarrow{x}^{{m}} \approx{x}^{{n}} \approx\mathrm{1} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}\approx\frac{{m}−{n}}{{m}−{n}}=\mathrm{1} \\ $$
Commented by Necxx last updated on 28/Sep/18
$$\left.{T}\left.{he}\:{options}\:{are}\:{a}\right)\:{x}^{{m}+{n}} \:{b}\right){x}^{{m}−{n}} \\ $$$$\left.{c}\left.\right){x}^{{m}} \:{d}\right){x}^{{n}} \\ $$$${I}\:{also}\:{got}\:\mathrm{1}\:{but}\:{couldnt}\:{see}\:{it}\:{in} \\ $$$${option} \\ $$$$ \\ $$$$ \\ $$
Commented by MrW3 last updated on 28/Sep/18
$${all}\:{these}\:{options}\:{are}\:{also}\:\approx\mathrm{1} \\ $$
Commented by math khazana by abdo last updated on 29/Sep/18
$${changement}\:{x}\:=\mathrm{1}+\xi\:{give}\: \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}\:=\frac{{m}\left(\mathrm{1}+\xi\right)^{{m}} −{n}\left(\mathrm{1}+\xi\right)^{{n}} }{{m}−{n}}\:={A}\left({x}\right) \\ $$$${x}\rightarrow\mathrm{1}\:\Rightarrow\xi\rightarrow\mathrm{0}\:{so}\:\left(\mathrm{1}+\xi\right)^{{m}} \:\sim\mathrm{1}+{m}\xi\:{and} \\ $$$$\left(\mathrm{1}+\xi\right)^{{n}} \:\sim\mathrm{1}+{n}\xi\:\Rightarrow{A}\left({x}\right)\:\sim\:\frac{{m}\left(\mathrm{1}+{m}\xi\right)−{n}\left(\mathrm{1}+{n}\xi\right)}{{m}−{n}} \\ $$$$=\:\mathrm{1}\:+\left({m}+{n}\right)\xi\:\rightarrow\mathrm{1}\:\left(\xi\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$$\left.{lim}_{{x}\rightarrow\mathrm{1}} {A}\left({x}\right)\right)\:=\mathrm{1}\:. \\ $$
Answered by ajfour last updated on 28/Sep/18
$$\:=\:\frac{{m}\left(\mathrm{1}+{mh}\right)−{n}\left(\mathrm{1}+{nh}\right)}{{m}−{n}} \\ $$$$\:=\:\mathrm{1}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Sep/18
$$\frac{{mx}^{{m}} −{nx}^{{m}} +{nx}^{{m}} −{nx}^{{n}} }{{m}−{n}} \\ $$$$=\frac{{x}^{{m}} \left({m}−{n}\right)+{nx}^{{n}} \left({x}^{{m}−{n}} −\mathrm{1}\right)}{{m}−{n}} \\ $$$$={x}^{{m}} +\frac{{x}^{{n}} \left({x}^{{m}−{n}} −\mathrm{1}\right)}{\frac{{m}}{{n}}−\mathrm{1}} \\ $$$${x}^{{m}−{n}} \approx\mathrm{1} \\ $$$$={x}^{{m}} \\ $$
Commented by Necxx last updated on 28/Sep/18
$${Thats}\:{true}…\:{I}'{m}\:{clear}\:{now} \\ $$