Menu Close

If-x-is-nearly-equal-to-1-then-mx-m-nx-n-m-n-




Question Number 44397 by Necxx last updated on 28/Sep/18
If x is nearly equal to 1 then  ((mx^m −nx^n )/(m−n))=
$${If}\:{x}\:{is}\:{nearly}\:{equal}\:{to}\:\mathrm{1}\:{then} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}= \\ $$
Commented by MrW3 last updated on 28/Sep/18
if x≈1  ⇒x^m ≈x^n ≈1  ((mx^m −nx^n )/(m−n))≈((m−n)/(m−n))=1
$${if}\:{x}\approx\mathrm{1} \\ $$$$\Rightarrow{x}^{{m}} \approx{x}^{{n}} \approx\mathrm{1} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}\approx\frac{{m}−{n}}{{m}−{n}}=\mathrm{1} \\ $$
Commented by Necxx last updated on 28/Sep/18
The options are a) x^(m+n)  b)x^(m−n)   c)x^m  d)x^n   I also got 1 but couldnt see it in  option
$$\left.{T}\left.{he}\:{options}\:{are}\:{a}\right)\:{x}^{{m}+{n}} \:{b}\right){x}^{{m}−{n}} \\ $$$$\left.{c}\left.\right){x}^{{m}} \:{d}\right){x}^{{n}} \\ $$$${I}\:{also}\:{got}\:\mathrm{1}\:{but}\:{couldnt}\:{see}\:{it}\:{in} \\ $$$${option} \\ $$$$ \\ $$$$ \\ $$
Commented by MrW3 last updated on 28/Sep/18
all these options are also ≈1
$${all}\:{these}\:{options}\:{are}\:{also}\:\approx\mathrm{1} \\ $$
Commented by math khazana by abdo last updated on 29/Sep/18
changement x =1+ξ give   ((mx^m −nx^n )/(m−n)) =((m(1+ξ)^m −n(1+ξ)^n )/(m−n)) =A(x)  x→1 ⇒ξ→0 so (1+ξ)^m  ∼1+mξ and  (1+ξ)^n  ∼1+nξ ⇒A(x) ∼ ((m(1+mξ)−n(1+nξ))/(m−n))  = 1 +(m+n)ξ →1 (ξ→0) ⇒  lim_(x→1) A(x)) =1 .
$${changement}\:{x}\:=\mathrm{1}+\xi\:{give}\: \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}\:=\frac{{m}\left(\mathrm{1}+\xi\right)^{{m}} −{n}\left(\mathrm{1}+\xi\right)^{{n}} }{{m}−{n}}\:={A}\left({x}\right) \\ $$$${x}\rightarrow\mathrm{1}\:\Rightarrow\xi\rightarrow\mathrm{0}\:{so}\:\left(\mathrm{1}+\xi\right)^{{m}} \:\sim\mathrm{1}+{m}\xi\:{and} \\ $$$$\left(\mathrm{1}+\xi\right)^{{n}} \:\sim\mathrm{1}+{n}\xi\:\Rightarrow{A}\left({x}\right)\:\sim\:\frac{{m}\left(\mathrm{1}+{m}\xi\right)−{n}\left(\mathrm{1}+{n}\xi\right)}{{m}−{n}} \\ $$$$=\:\mathrm{1}\:+\left({m}+{n}\right)\xi\:\rightarrow\mathrm{1}\:\left(\xi\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$$\left.{lim}_{{x}\rightarrow\mathrm{1}} {A}\left({x}\right)\right)\:=\mathrm{1}\:. \\ $$
Answered by ajfour last updated on 28/Sep/18
 = ((m(1+mh)−n(1+nh))/(m−n))   = 1 .
$$\:=\:\frac{{m}\left(\mathrm{1}+{mh}\right)−{n}\left(\mathrm{1}+{nh}\right)}{{m}−{n}} \\ $$$$\:=\:\mathrm{1}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Sep/18
((mx^m −nx^m +nx^m −nx^n )/(m−n))  =((x^m (m−n)+nx^n (x^(m−n) −1))/(m−n))  =x^m +((x^n (x^(m−n) −1))/((m/n)−1))  x^(m−n) ≈1  =x^m
$$\frac{{mx}^{{m}} −{nx}^{{m}} +{nx}^{{m}} −{nx}^{{n}} }{{m}−{n}} \\ $$$$=\frac{{x}^{{m}} \left({m}−{n}\right)+{nx}^{{n}} \left({x}^{{m}−{n}} −\mathrm{1}\right)}{{m}−{n}} \\ $$$$={x}^{{m}} +\frac{{x}^{{n}} \left({x}^{{m}−{n}} −\mathrm{1}\right)}{\frac{{m}}{{n}}−\mathrm{1}} \\ $$$${x}^{{m}−{n}} \approx\mathrm{1} \\ $$$$={x}^{{m}} \\ $$
Commented by Necxx last updated on 28/Sep/18
Thats true... I′m clear now
$${Thats}\:{true}…\:{I}'{m}\:{clear}\:{now} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *