Question Number 175490 by Linton last updated on 31/Aug/22
$${solve} \\ $$$${f}\left({x}\right){f}\left({y}\right)=\:{f}\left({x}+{y}\right)+{xy} \\ $$$${f}:\mathbb{R}\Rightarrow\mathbb{R} \\ $$
Answered by ajfour last updated on 31/Aug/22
$${f}\left({x}\right){f}\left(\mathrm{0}\right)={f}\left({x}+\mathrm{0}\right)+\mathrm{0} \\ $$$$\Rightarrow\:\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}\left({x}\right){f}\left({y}\right)={f}\left({x}+{y}\right)+{xy} \\ $$$${f}^{\:\mathrm{2}} \left({x}\right)={f}\left(\mathrm{2}{x}\right)+{x}^{\mathrm{2}} \\ $$$$\mathrm{2}{f}\left({x}\right){f}'\left({x}\right)=\mathrm{2}{f}'\left(\mathrm{2}{x}\right)+\mathrm{2}{x} \\ $$$$\Rightarrow\mathrm{2}\left\{{f}'\left({x}\right)\right\}^{\mathrm{2}} +\mathrm{2}{f}'\left({x}\right){f}''\left({x}\right) \\ $$$$\:\:\:=\mathrm{4}{f}''\left(\mathrm{2}{x}\right)+\mathrm{2} \\ $$$${let}\:\:{x}=\mathrm{0} \\ $$$$\mathrm{2}+\mathrm{2}{f}''\left(\mathrm{0}\right)=\mathrm{4}{f}''\left(\mathrm{0}\right)+\mathrm{2} \\ $$$$\Rightarrow\:\:\:{f}''\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({x}\right){f}\left({h}\right)={f}\left({x}+{h}\right)+{hx} \\ $$$$\Rightarrow\:\:\frac{{df}\left({x}\right)}{{dx}}=\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{f}\left({x}\right){f}\left({h}\right)−{hx}−{f}\left({x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{f}\left({x}\right){f}\left({h}\right)−{hx}−{f}\left({x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={f}\left({x}\right)\left\{\frac{{f}\left({h}\right)−{f}\left(\mathrm{0}\right)}{{h}}\right\}−{x} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{df}\left({x}\right)}{{dx}}\:={cf}\left({x}\right)−{x} \\ $$$$\Rightarrow\:\:\:\frac{{dy}}{{dx}}−{cy}=−{x} \\ $$$${ye}^{−{cx}} =−\int{xe}^{−{cx}} \\ $$$${ye}^{−{cx}} =\frac{\mathrm{1}}{{c}}{xe}^{−{cx}} +\frac{\mathrm{1}}{{c}^{\mathrm{2}} }{e}^{−{cx}} \\ $$$${c}^{\mathrm{2}} {y}={cx}+\mathrm{1} \\ $$$${f}\left({x}\right)={y}=\frac{{cx}+\mathrm{1}}{{c}^{\mathrm{2}} } \\ $$$${but}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\:\Rightarrow\:\:\:{c}=\pm\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{1}\pm{x} \\ $$$$ \\ $$
Commented by Tawa11 last updated on 15/Sep/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$