Menu Close

xy-xz-255-xz-yz-224-find-x-y-and-z-




Question Number 176316 by Matica last updated on 16/Sep/22
  xy+xz=255   xz−yz=224.  find x y and z
$$\:\:{xy}+{xz}=\mathrm{255} \\ $$$$\:{xz}−{yz}=\mathrm{224}. \\ $$$${find}\:{x}\:{y}\:{and}\:{z} \\ $$
Answered by Frix last updated on 16/Sep/22
x∈R\{0}  y=(x/2)+((255)/(2x))±((√(x^4 +386x^2 +65025))/(2x))  z=−(x/2)+((255)/(2x))∓((√(x^4 +386x^2 +65025))/(2x))
$${x}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$$${y}=\frac{{x}}{\mathrm{2}}+\frac{\mathrm{255}}{\mathrm{2}{x}}\pm\frac{\sqrt{{x}^{\mathrm{4}} +\mathrm{386}{x}^{\mathrm{2}} +\mathrm{65025}}}{\mathrm{2}{x}} \\ $$$${z}=−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{255}}{\mathrm{2}{x}}\mp\frac{\sqrt{{x}^{\mathrm{4}} +\mathrm{386}{x}^{\mathrm{2}} +\mathrm{65025}}}{\mathrm{2}{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *