Menu Close

find-arcsin-2x-1-4x-2-dx-




Question Number 45970 by maxmathsup by imad last updated on 19/Oct/18
find ∫  ((arcsin(2x))/( (√(1−4x^2 ))))dx
$${find}\:\int\:\:\frac{{arcsin}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{dx} \\ $$
Commented by maxmathsup by imad last updated on 20/Oct/18
changement arcsin(2x)=t  give  2x=sint ⇒2dx=cost dt ⇒  ∫ ((arcsin(2x))/( (√(1−4x^2 ))))dx = (1/2)∫  (t/(cost)) cost dt =(1/2) ∫ t dt =(t^2 /4) +c   =(1/4)(arcsin(2x))^2  +c .
$${changement}\:{arcsin}\left(\mathrm{2}{x}\right)={t}\:\:{give}\:\:\mathrm{2}{x}={sint}\:\Rightarrow\mathrm{2}{dx}={cost}\:{dt}\:\Rightarrow \\ $$$$\int\:\frac{{arcsin}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{{t}}{{cost}}\:{cost}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:{t}\:{dt}\:=\frac{{t}^{\mathrm{2}} }{\mathrm{4}}\:+{c}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left({arcsin}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} \:+{c}\:. \\ $$
Answered by  last updated on 19/Oct/18
∵sin^(−1) 2x=t  (1/( (√(1−4x^2 ))))dx=(1/2)dt  =(1/2)∫tdt  =(1/4)[sin^(−1) 2x]^2 +c
$$\because{sin}^{−\mathrm{1}} \mathrm{2}{x}={t} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{dx}=\frac{\mathrm{1}}{\mathrm{2}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{tdt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[{sin}^{−\mathrm{1}} \mathrm{2}{x}\right]^{\mathrm{2}} +{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *