Question Number 131452 by Engr_Jidda last updated on 04/Feb/21
$${integrate} \\ $$$$\int_{\mathrm{0}} ^{{n}\pi} \varrho^{\left(\frac{\mathrm{8}{u}}{{n}\pi}\right)} \left(\mathrm{1}−{cos}\mathrm{2}{u}\right){du} \\ $$
Answered by bramlexs22 last updated on 04/Feb/21
$${hint}\::\:{let}\:\frac{\mathrm{8}{u}}{{n}\pi}\:=\:{t}\:\Rightarrow\:\mathrm{2}{u}=\frac{{tn}\pi}{\mathrm{4}}\:;\:{du}\:=\:\frac{{n}\pi}{\mathrm{8}}\:{dt} \\ $$$$\:\begin{array}{|c|c|}{{u}={n}\pi\Rightarrow{t}=\mathrm{8}}\\{{u}=\mathrm{0}\Rightarrow{t}=\mathrm{0}}\\\hline\end{array} \\ $$$${I}=\int_{\mathrm{0}} ^{\:\mathrm{8}} {e}^{{t}} \left(\mathrm{1}−\mathrm{cos}\:\frac{{tn}\pi}{\mathrm{4}}\right)\left(\frac{{n}\pi}{\mathrm{8}}\right)\:{dt}\: \\ $$$$\:{using}\:{integration}\:{by}\:{parts} \\ $$