Question Number 131453 by Engr_Jidda last updated on 04/Feb/21
$$\int\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{16}−{x}^{\mathrm{2}} }}{dx} \\ $$
Answered by bramlexs22 last updated on 04/Feb/21
$$\:\sqrt{\mathrm{16}−{x}^{\mathrm{2}} }\:=\:{l}\:\Rightarrow\:{x}^{\mathrm{2}} =\mathrm{16}−{l}^{\mathrm{2}} \:;\:{x}\:{dx}\:=\:−{l}\:{dl} \\ $$$${L}=\int\:\frac{\left(\mathrm{16}−{l}^{\mathrm{2}} \right)\left(−{l}\:{dl}\right)}{{l}}=\int\:\left({l}^{\mathrm{2}} −\mathrm{16}\right)\:{dl} \\ $$$${L}=\frac{\mathrm{1}}{\mathrm{3}}{l}^{\mathrm{3}} −\mathrm{16}{l}\:+\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{l}\:\left({l}^{\mathrm{2}} −\mathrm{48}\right)+{c} \\ $$$${L}=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{16}−{x}^{\mathrm{2}} }\:\left(−{x}^{\mathrm{2}} −\mathrm{32}\right)+\:{c} \\ $$