Menu Close

solve-x-y-e-x-y-x-sinx-




Question Number 46609 by maxmathsup by imad last updated on 29/Oct/18
solve    x y^(′′)  −e^(−x) y^′    =x sinx
$${solve}\:\:\:\:{x}\:{y}^{''} \:−{e}^{−{x}} {y}^{'} \:\:\:={x}\:{sinx} \\ $$
Commented by maxmathsup by imad last updated on 11/Nov/18
hangement y^′ =z give xz^′ −e^(−x) z =xsinx  (he)⇒xz^′  −e^(−x) z =0 ⇒xz^′  =e^(−x) z ⇒(z^′ /z) =(e^(−x) /x) ⇒ln∣z∣=∫ (e^(−x) /x)dx +α ⇒  z =K e^(∫(e^(−x) /x)dx)   mvc method gve z^′ =K^′  e^(∫ (e^(−x) /x)dx)  +K (e^(−x) /x) e^(∫ (e^(−x) /x)dx)   (e) ⇒xK^′  e^(∫ (e^(−x) /x)dx)   +Ke^(−x)  e^(∫ (e^(−x) /x)dx)  −e^(−x) K e^(∫(e^(−x) /x)dx)  =xsinx ⇒  xK^′  e^(∫(e^(−x) /x)dx)  =xsinx ⇒K^′   =sinx e^(−∫ (e^(−x) /x)dx)  ⇒   K(x)= ∫_. ^x  (sint e^(−∫ (e^(−t) /t)dt) )dt +λ ⇒z =(∫_. ^x (sint e^(−∫(e^(−t) /t)dt) )dt +λ)e^(∫ (e^(−x) /x))  dx  but y^′ (x)=z(x) ⇒y(x)=∫ z(x)dx +β  and the function z is determined.
$${hangement}\:{y}^{'} ={z}\:{give}\:{xz}^{'} −{e}^{−{x}} {z}\:={xsinx} \\ $$$$\left({he}\right)\Rightarrow{xz}^{'} \:−{e}^{−{x}} {z}\:=\mathrm{0}\:\Rightarrow{xz}^{'} \:={e}^{−{x}} {z}\:\Rightarrow\frac{{z}^{'} }{{z}}\:=\frac{{e}^{−{x}} }{{x}}\:\Rightarrow{ln}\mid{z}\mid=\int\:\frac{{e}^{−{x}} }{{x}}{dx}\:+\alpha\:\Rightarrow \\ $$$${z}\:={K}\:{e}^{\int\frac{{e}^{−{x}} }{{x}}{dx}} \:\:{mvc}\:{method}\:{gve}\:{z}^{'} ={K}^{'} \:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:+{K}\:\frac{{e}^{−{x}} }{{x}}\:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \\ $$$$\left({e}\right)\:\Rightarrow{xK}^{'} \:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:\:+{Ke}^{−{x}} \:{e}^{\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:−{e}^{−{x}} {K}\:{e}^{\int\frac{{e}^{−{x}} }{{x}}{dx}} \:={xsinx}\:\Rightarrow \\ $$$${xK}^{'} \:{e}^{\int\frac{{e}^{−{x}} }{{x}}{dx}} \:={xsinx}\:\Rightarrow{K}^{'} \:\:={sinx}\:{e}^{−\int\:\frac{{e}^{−{x}} }{{x}}{dx}} \:\Rightarrow\: \\ $$$${K}\left({x}\right)=\:\int_{.} ^{{x}} \:\left({sint}\:{e}^{−\int\:\frac{{e}^{−{t}} }{{t}}{dt}} \right){dt}\:+\lambda\:\Rightarrow{z}\:=\left(\int_{.} ^{{x}} \left({sint}\:{e}^{−\int\frac{{e}^{−{t}} }{{t}}{dt}} \right){dt}\:+\lambda\right){e}^{\int\:\frac{{e}^{−{x}} }{{x}}} \:{dx} \\ $$$${but}\:{y}^{'} \left({x}\right)={z}\left({x}\right)\:\Rightarrow{y}\left({x}\right)=\int\:{z}\left({x}\right){dx}\:+\beta\:\:{and}\:{the}\:{function}\:{z}\:{is}\:{determined}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *