Menu Close

The-point-of-the-curve-3x-2-4y-2-72-which-nearest-to-the-line-3x-2y-1-is-a-6-3-c-6-6-b-6-3-d-6-5-




Question Number 112358 by john santu last updated on 07/Sep/20
The point of the curve 3x^2 −4y^2 =72  which nearest to the line 3x+2y=1  is___  (a) (6,3)       (c) (6,6)  (b) (6,−3)  (d) (6,5)
$${The}\:{point}\:{of}\:{the}\:{curve}\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} =\mathrm{72} \\ $$$${which}\:{nearest}\:{to}\:{the}\:{line}\:\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{1} \\ $$$${is\_\_\_} \\ $$$$\left({a}\right)\:\left(\mathrm{6},\mathrm{3}\right)\:\:\:\:\:\:\:\left({c}\right)\:\left(\mathrm{6},\mathrm{6}\right) \\ $$$$\left({b}\right)\:\left(\mathrm{6},−\mathrm{3}\right)\:\:\left({d}\right)\:\left(\mathrm{6},\mathrm{5}\right) \\ $$
Answered by MJS_new last updated on 07/Sep/20
distance of point to given line is  d=((∣3x+2y−1∣)/( (√(13))))  curve: y=±((√(3x^2 −72))/4)  ((∣3x±((√(3x^2 −72))/2)−1∣)/( (√(13))))  the absolute doesn′t change the values only  the signs. we need  (d/dx)[3x±((√(3x^2 −72))/2)−1]=0  3±((x(√3))/( (√(x^2 −24))))=0 ⇒ x=±6 ⇒ y=±3  inserting in d we get the minimum with  x=6∧y=−3
$$\mathrm{distance}\:\mathrm{of}\:\mathrm{point}\:\mathrm{to}\:\mathrm{given}\:\mathrm{line}\:\mathrm{is} \\ $$$${d}=\frac{\mid\mathrm{3}{x}+\mathrm{2}{y}−\mathrm{1}\mid}{\:\sqrt{\mathrm{13}}} \\ $$$$\mathrm{curve}:\:{y}=\pm\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{72}}}{\mathrm{4}} \\ $$$$\frac{\mid\mathrm{3}{x}\pm\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{72}}}{\mathrm{2}}−\mathrm{1}\mid}{\:\sqrt{\mathrm{13}}} \\ $$$$\mathrm{the}\:\mathrm{absolute}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{change}\:\mathrm{the}\:\mathrm{values}\:\mathrm{only} \\ $$$$\mathrm{the}\:\mathrm{signs}.\:\mathrm{we}\:\mathrm{need} \\ $$$$\frac{{d}}{{dx}}\left[\mathrm{3}{x}\pm\frac{\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{72}}}{\mathrm{2}}−\mathrm{1}\right]=\mathrm{0} \\ $$$$\mathrm{3}\pm\frac{{x}\sqrt{\mathrm{3}}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{24}}}=\mathrm{0}\:\Rightarrow\:{x}=\pm\mathrm{6}\:\Rightarrow\:{y}=\pm\mathrm{3} \\ $$$$\mathrm{inserting}\:\mathrm{in}\:{d}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{with} \\ $$$${x}=\mathrm{6}\wedge{y}=−\mathrm{3} \\ $$
Commented by john santu last updated on 07/Sep/20
thank you prof...
$${thank}\:{you}\:{prof}… \\ $$
Answered by ajfour last updated on 07/Sep/20
tangent to curve  ((xx_1 )/(24))−((yy_1 )/(18))=1  slope  = ((3x_1 )/(4y_1 ))=−(3/2)  ⇒  x_1 =−2y_1   ⇒  3x_1 ^2 −x_1 ^2 = 72  x_1 = 6 , y_1 =−3
$${tangent}\:{to}\:{curve} \\ $$$$\frac{{xx}_{\mathrm{1}} }{\mathrm{24}}−\frac{{yy}_{\mathrm{1}} }{\mathrm{18}}=\mathrm{1} \\ $$$${slope}\:\:=\:\frac{\mathrm{3}{x}_{\mathrm{1}} }{\mathrm{4}{y}_{\mathrm{1}} }=−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:{x}_{\mathrm{1}} =−\mathrm{2}{y}_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\mathrm{3}{x}_{\mathrm{1}} ^{\mathrm{2}} −{x}_{\mathrm{1}} ^{\mathrm{2}} =\:\mathrm{72} \\ $$$${x}_{\mathrm{1}} =\:\mathrm{6}\:,\:{y}_{\mathrm{1}} =−\mathrm{3} \\ $$
Commented by ajfour last updated on 07/Sep/20
Commented by bemath last updated on 07/Sep/20
yes...your method same to my solution. by tangent  line of hyperbola parallel to given line
$$\mathrm{yes}…\mathrm{your}\:\mathrm{method}\:\mathrm{same}\:\mathrm{to}\:\mathrm{my}\:\mathrm{solution}.\:\mathrm{by}\:\mathrm{tangent} \\ $$$$\mathrm{line}\:\mathrm{of}\:\mathrm{hyperbola}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{given}\:\mathrm{line} \\ $$
Commented by ajfour last updated on 07/Sep/20
Nice to know; i think you will like  attempting  Q. 112356 posted by me..
$${Nice}\:{to}\:{know};\:{i}\:{think}\:{you}\:{will}\:{like} \\ $$$${attempting}\:\:{Q}.\:\mathrm{112356}\:{posted}\:{by}\:{me}.. \\ $$
Commented by bemath last updated on 07/Sep/20
yes. your question is greatt
$$\mathrm{yes}.\:\mathrm{your}\:\mathrm{question}\:\mathrm{is}\:\mathrm{greatt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *