Menu Close

find-f-t-0-1-x-2-arctan-1-tx-dx-




Question Number 46856 by maxmathsup by imad last updated on 01/Nov/18
find f(t) =∫_0 ^1  x^2  arctan(1+tx)dx
$${find}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}} \:{arctan}\left(\mathrm{1}+{tx}\right){dx}\: \\ $$
Commented by maxmathsup by imad last updated on 02/Nov/18
changement tx =u give f(t) =∫_0 ^t  (u^2 /t^2 ) arctan(1+u)(du/t)  = (1/t^3 ) ∫_0 ^t  u^2  arctan(1+u)du  (we suppose u≠0) but  ∫_0 ^t  u^2  arctan(1+u)du =_(1+u =α)   ∫_1 ^(1+t)  (α−1)^2  arctanα dα  =[(1/3)(α−1)^3  arctanα]_1 ^(1+t)  −(1/3)∫_1 ^(1+t)   (α−1)^3  (dα/(1+α^2 ))  =(1/3){t^3  arctan(1+t)} −(1/3) ∫_1 ^(1+t)  ((α^3  −3α^2  +3α −1)/(1+α^2 ))dα  ∫_1 ^(1+t)  ((α^3  −3α^2  +3α −1)/(1+α^2 ))dα =∫_1 ^(1+t)   ((α(α^2  +1)+2α −3α^2 −1)/(1+α^2 )) dα  =∫_1 ^(1+t)  α dα  +∫_1 ^(1+t)   ((2α)/(1+α^2 )) dα − ∫_1 ^(1+α)  ((3α^2  +1)/(1+α^2 )) dα  =[(α^2 /2)]_1 ^(1+t)  +[ln(1+α^2 )]_1 ^(1+t)   −3  ∫_1 ^(1+t)  ((1+α^2 −1)/(1+α^2 )) dα −[arctanα]_1 ^(1+t)   =(1/2){(1+t)^2 −1} +ln(1+(1+t)^2 )−ln(2)−3 t   +[2 arctanα]_1 ^(1+t)   =(1/2){ t^2  +2t}+ln(t^2  +2t +2)−ln(2)−3t  +2{ artan (1+t)−(π/2)}.
$${changement}\:{tx}\:={u}\:{give}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{{t}} \:\frac{{u}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\:{arctan}\left(\mathrm{1}+{u}\right)\frac{{du}}{{t}} \\ $$$$=\:\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{{t}} \:{u}^{\mathrm{2}} \:{arctan}\left(\mathrm{1}+{u}\right){du}\:\:\left({we}\:{suppose}\:{u}\neq\mathrm{0}\right)\:{but} \\ $$$$\int_{\mathrm{0}} ^{{t}} \:{u}^{\mathrm{2}} \:{arctan}\left(\mathrm{1}+{u}\right){du}\:=_{\mathrm{1}+{u}\:=\alpha} \:\:\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\left(\alpha−\mathrm{1}\right)^{\mathrm{2}} \:{arctan}\alpha\:{d}\alpha \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{3}}\left(\alpha−\mathrm{1}\right)^{\mathrm{3}} \:{arctan}\alpha\right]_{\mathrm{1}} ^{\mathrm{1}+{t}} \:−\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\:\left(\alpha−\mathrm{1}\right)^{\mathrm{3}} \:\frac{{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left\{{t}^{\mathrm{3}} \:{arctan}\left(\mathrm{1}+{t}\right)\right\}\:−\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\frac{\alpha^{\mathrm{3}} \:−\mathrm{3}\alpha^{\mathrm{2}} \:+\mathrm{3}\alpha\:−\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }{d}\alpha \\ $$$$\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\frac{\alpha^{\mathrm{3}} \:−\mathrm{3}\alpha^{\mathrm{2}} \:+\mathrm{3}\alpha\:−\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }{d}\alpha\:=\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\:\frac{\alpha\left(\alpha^{\mathrm{2}} \:+\mathrm{1}\right)+\mathrm{2}\alpha\:−\mathrm{3}\alpha^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:{d}\alpha \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\alpha\:{d}\alpha\:\:+\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\:\frac{\mathrm{2}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }\:{d}\alpha\:−\:\int_{\mathrm{1}} ^{\mathrm{1}+\alpha} \:\frac{\mathrm{3}\alpha^{\mathrm{2}} \:+\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:{d}\alpha \\ $$$$=\left[\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{1}} ^{\mathrm{1}+{t}} \:+\left[{ln}\left(\mathrm{1}+\alpha^{\mathrm{2}} \right)\right]_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\:−\mathrm{3}\:\:\int_{\mathrm{1}} ^{\mathrm{1}+{t}} \:\frac{\mathrm{1}+\alpha^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:{d}\alpha\:−\left[{arctan}\alpha\right]_{\mathrm{1}} ^{\mathrm{1}+{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} −\mathrm{1}\right\}\:+{ln}\left(\mathrm{1}+\left(\mathrm{1}+{t}\right)^{\mathrm{2}} \right)−{ln}\left(\mathrm{2}\right)−\mathrm{3}\:{t}\:\:\:+\left[\mathrm{2}\:{arctan}\alpha\right]_{\mathrm{1}} ^{\mathrm{1}+{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{t}^{\mathrm{2}} \:+\mathrm{2}{t}\right\}+{ln}\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\:+\mathrm{2}\right)−{ln}\left(\mathrm{2}\right)−\mathrm{3}{t}\:\:+\mathrm{2}\left\{\:{artan}\:\left(\mathrm{1}+{t}\right)−\frac{\pi}{\mathrm{2}}\right\}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *