Menu Close

e-x-2-dx-




Question Number 178563 by zaheen last updated on 18/Oct/22
∫e^x^2  dx=?
$$\int{e}^{{x}^{\mathrm{2}} } {dx}=? \\ $$
Answered by Acem last updated on 18/Oct/22
  We have ∫e^(−x^2 ) dx= ((√π)/2) erf(x)+ c  e^x^2  = e^(−(ix)^2 )  then supposed that u= ix⇒ du=idx  ∫e^x^2  dx= (1/i)∫e^(−u^2 ) du= −i.((√π)/2) erf(u)+ c                  = ((−i (√π))/2) erf(ix) +c
$$ \\ $$$${We}\:{have}\:\int{e}^{−{x}^{\mathrm{2}} } {dx}=\:\frac{\sqrt{\pi}}{\mathrm{2}}\:{erf}\left({x}\right)+\:{c} \\ $$$${e}^{{x}^{\mathrm{2}} } =\:{e}^{−\left({ix}\right)^{\mathrm{2}} } \:{then}\:{supposed}\:{that}\:{u}=\:{ix}\Rightarrow\:{du}={idx} \\ $$$$\int{e}^{{x}^{\mathrm{2}} } {dx}=\:\frac{\mathrm{1}}{{i}}\int{e}^{−{u}^{\mathrm{2}} } {du}=\:−{i}.\frac{\sqrt{\pi}}{\mathrm{2}}\:{erf}\left({u}\right)+\:{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{−{i}\:\sqrt{\pi}}{\mathrm{2}}\:{erf}\left({ix}\right)\:+{c} \\ $$
Answered by Spillover last updated on 18/Oct/22
∫e^x^2  dx=∫e^(−(−x^2 ))) dx  u=ix    x=(u/i)  dx=−idu  ∫e^(−u^2 ) −idu  −i∫e^(−u^2 du)   −i((√π)/2)erf(ix)+D  ((√π)/2)erfi(x)+D
$$\int\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\int\mathrm{e}^{\left.−\left(−\mathrm{x}^{\mathrm{2}} \right)\right)} \mathrm{dx} \\ $$$$\mathrm{u}=\mathrm{ix}\:\:\:\:\mathrm{x}=\frac{\mathrm{u}}{\mathrm{i}} \\ $$$$\mathrm{dx}=−\mathrm{idu} \\ $$$$\int\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} } −\mathrm{idu} \\ $$$$−\mathrm{i}\int\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} \mathrm{du}} \\ $$$$−\mathrm{i}\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erf}\left(\mathrm{ix}\right)+\mathrm{D} \\ $$$$\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfi}\left(\mathrm{x}\right)+\mathrm{D} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *