Menu Close

If-n-Z-prove-that-1-2-1-1-3-2-1-4-3-1-n-1-n-lt-2-




Question Number 113070 by ZiYangLee last updated on 11/Sep/20
If n∈Z^+ , prove that  (1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<2
$$\mathrm{If}\:{n}\in\mathbb{Z}^{+} ,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}+…\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\sqrt{{n}}}<\mathrm{2} \\ $$$$ \\ $$
Answered by 1549442205PVT last updated on 11/Sep/20
We have (1/((n+1)(√n)))=(√n).(1/((n+1)n))  =(√n)((1/n)−(1/(n+1)))=(√n)((1/( (√n)))+(1/( (√(n+1)))))((1/( (√n)))−(1/( (√(n+1)))))  =(1+(1/( (√(n+1)))))((1/( (√n)))−(1/( (√(n+1)))))  Since (1+(1/( (√(n+1)))))<2,so [(1/((n+1)(√n)))]  <2((1/( (√n)))−(1/( (√(n+1))))).Hence,give n=1,2,...  we get  (1/(2(√1)))=(1/2)<2((1/1)−(1/( (√2)))),(1/(3(√2)))<2((1/( (√2)))−(1/( (√3)))),  ...,(1/((n+1)(√n)))<2((1/( (√n)))−(1/( (√(n+1)))))  Adding up n above inequalities we get  LHS=(1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<  2[(1/( (√1)))−(1/( (√2)))+(1/( (√2)))−(1/( (√3)))+...+(1/( (√n)))−(1/( (√(n+1)))))  =2(1−(1/( (√(n+1)))))<2  Therefore,we have   (1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<2(q.e.d)
$$\mathrm{We}\:\mathrm{have}\:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)\sqrt{\mathrm{n}}}=\sqrt{\mathrm{n}}.\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{n}} \\ $$$$=\sqrt{\mathrm{n}}\left(\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right)=\sqrt{\mathrm{n}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right) \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right) \\ $$$$\mathrm{Since}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right)<\mathrm{2},\mathrm{so}\:\left[\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)\sqrt{\mathrm{n}}}\right] \\ $$$$<\mathrm{2}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right).\mathrm{Hence},\mathrm{give}\:\mathrm{n}=\mathrm{1},\mathrm{2},… \\ $$$$\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}}<\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right),\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}<\mathrm{2}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right), \\ $$$$…,\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)\sqrt{\mathrm{n}}}<\mathrm{2}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right) \\ $$$$\mathrm{Adding}\:\mathrm{up}\:\mathrm{n}\:\mathrm{above}\:\mathrm{inequalities}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{LHS}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}+…\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\sqrt{{n}}}< \\ $$$$\mathrm{2}\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+…+\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right) \\ $$$$=\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}+\mathrm{1}}}\right)<\mathrm{2} \\ $$$$\boldsymbol{\mathrm{Therefore}},\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{have}}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}+…\frac{\mathrm{1}}{\left(\boldsymbol{{n}}+\mathrm{1}\right)\sqrt{\boldsymbol{{n}}}}<\mathrm{2}\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *