Menu Close

0-1-x-2-log-1-x-dx-




Question Number 113159 by Dwaipayan Shikari last updated on 11/Sep/20
∫_0 ^1 x^2 log(1−x)dx
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {log}\left(\mathrm{1}−{x}\right){dx} \\ $$
Answered by MJS_new last updated on 11/Sep/20
∫x^2 ln (1−x) dx=       [by parts]  =(x^3 /3)ln (1−x) −(1/3)∫(x^3 /(x−1))dx=  =(x^3 /3)ln (1−x) −(1/3)∫x^2 +x+1+(1/(x−1))dx=  =(x^3 /3)ln (1−x) −(1/3)ln (x−1) −(x^3 /9)−(x^2 /6)−(x/3)+C  now we have to calculate the limit of this  with x→1^−   I get ∫_0 ^1 x^2 ln (1−x) dx=−((11)/(18))
$$\int{x}^{\mathrm{2}} \mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{by}\:\mathrm{parts}\right] \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}^{\mathrm{3}} }{{x}−\mathrm{1}}{dx}= \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\int{x}^{\mathrm{2}} +{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}−\mathrm{1}}{dx}= \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left({x}−\mathrm{1}\right)\:−\frac{{x}^{\mathrm{3}} }{\mathrm{9}}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}−\frac{{x}}{\mathrm{3}}+{C} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{with}\:{x}\rightarrow\mathrm{1}^{−} \\ $$$$\mathrm{I}\:\mathrm{get}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{\mathrm{2}} \mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:{dx}=−\frac{\mathrm{11}}{\mathrm{18}} \\ $$
Commented by Dwaipayan Shikari last updated on 11/Sep/20
I haven′t thought of this. Thanking you
$${I}\:{haven}'{t}\:{thought}\:{of}\:{this}.\:{Thanking}\:{you} \\ $$
Answered by abdomsup last updated on 11/Sep/20
let A =∫_0 ^1  x^2 ln(1−x)dx we have  (d/dx)ln(1−x) =−(1/(1−x)) =−Σ_(n=0) ^∞ x^n   ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (x^n /n) ⇒  A =−∫_0 ^1 x^2 (Σ_(n=1) ^∞  (x^n /n))dx  =−Σ_(n=1) ^∞  (1/n)∫_0 ^(1 )  x^(n+2)  dx  =−Σ_(n=1) ^∞  (1/(n(n+3)))    =−(1/3)Σ_(n=1) ^∞ ((1/n)−(1/(n+3)))  =−(1/3) Σ_(n=1) ^∞  (1/n) +(1/3)Σ_(n=1) ^∞  (1/(n+3))  but  Σ_(n=1) ^∞  (1/(n+3)) =Σ_(n=4) ^∞  (1/n) ⇒  A =−(1/3){1+(1/2)+(1/3) +Σ_(n=4) ^∞  (1/n)}  +(1/3)Σ_(n=4) ^∞  (1/4) =−(1/3){(3/2)+(1/3)}  =−(1/2)−(1/9) =((−11)/(18))
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right){dx}\:{we}\:{have} \\ $$$$\frac{{d}}{{dx}}{ln}\left(\mathrm{1}−{x}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} {x}^{{n}} \\ $$$$\Rightarrow{ln}\left(\mathrm{1}−{x}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\Rightarrow \\ $$$${A}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\right){dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}\:} \:{x}^{{n}+\mathrm{2}} \:{dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{3}\right)} \\ $$$$ \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\sum_{{n}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{3}}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\mathrm{3}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}+\mathrm{3}} \\ $$$${but}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}+\mathrm{3}}\:=\sum_{{n}=\mathrm{4}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:\Rightarrow \\ $$$${A}\:=−\frac{\mathrm{1}}{\mathrm{3}}\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\:+\sum_{{n}=\mathrm{4}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\right\} \\ $$$$+\frac{\mathrm{1}}{\mathrm{3}}\sum_{{n}=\mathrm{4}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{3}}\left\{\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{9}}\:=\frac{−\mathrm{11}}{\mathrm{18}} \\ $$
Commented by Dwaipayan Shikari last updated on 11/Sep/20
Great sir!
$${Great}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *