Menu Close

Does-anyone-know-a-good-website-for-nested-radicals-7-20-1-3-19-1-6-5-3-1-3-2-3-1-3-




Question Number 113221 by frc2crc last updated on 11/Sep/20
Does anyone know a good  website for nested radicals?  ((7((20))^(1/3) −19))^(1/6) =((5/3))^(1/3) −((2/3))^(1/3)
$${Does}\:{anyone}\:{know}\:{a}\:{good} \\ $$$${website}\:{for}\:{nested}\:{radicals}? \\ $$$$\sqrt[{\mathrm{6}}]{\mathrm{7}\sqrt[{\mathrm{3}}]{\mathrm{20}}−\mathrm{19}}=\sqrt[{\mathrm{3}}]{\mathrm{5}/\mathrm{3}}−\sqrt[{\mathrm{3}}]{\mathrm{2}/\mathrm{3}} \\ $$
Commented by Dwaipayan Shikari last updated on 11/Sep/20
(√x)+(√y)=(√(7+(√2)))  x+y+2(√(xy)) =7+(√2)  x+y=7    2(√(xy))=(√(2 )) ⇒2xy=1  (x+y)^2 −4xy=(x−y)^2 =47  x−y=(√(47))  x=((7+(√(47)))/2)  y=((7−(√(47)))/2)  (√(7+(√2)))  =(√((7+(√(47)))/2)) +(√((7−(√(47)))/2))  You can do this same for others
$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{\mathrm{7}+\sqrt{\mathrm{2}}} \\ $$$${x}+{y}+\mathrm{2}\sqrt{{xy}}\:=\mathrm{7}+\sqrt{\mathrm{2}} \\ $$$${x}+{y}=\mathrm{7}\:\:\:\:\mathrm{2}\sqrt{{xy}}=\sqrt{\mathrm{2}\:}\:\Rightarrow\mathrm{2}{xy}=\mathrm{1} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{4}{xy}=\left({x}−{y}\right)^{\mathrm{2}} =\mathrm{47} \\ $$$${x}−{y}=\sqrt{\mathrm{47}} \\ $$$${x}=\frac{\mathrm{7}+\sqrt{\mathrm{47}}}{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{7}−\sqrt{\mathrm{47}}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{7}+\sqrt{\mathrm{2}}}\:\:=\sqrt{\frac{\mathrm{7}+\sqrt{\mathrm{47}}}{\mathrm{2}}}\:+\sqrt{\frac{\mathrm{7}−\sqrt{\mathrm{47}}}{\mathrm{2}}} \\ $$$${You}\:{can}\:{do}\:{this}\:{same}\:{for}\:{others} \\ $$
Commented by frc2crc last updated on 11/Sep/20
i know this trick what about cuberoots?
$${i}\:{know}\:{this}\:{trick}\:{what}\:{about}\:{cuberoots}? \\ $$
Commented by Dwaipayan Shikari last updated on 11/Sep/20
(x)^(1/3) +(y)^(1/3)  =((a+(b)^(1/3) ))^(1/3)   x+y+3((xy))^(1/3)  ((x)^(1/3) +(y)^(1/3) )=a+(b)^(1/3)   x+y=a  27xy((x)^(1/3) +(y)^(1/3) )^3 =b  27xy(a+(b)^(1/3) )=b  xy=(b/(27(a+(b)^(1/3) )))         ( x−y)^2 =a−((4b)/(27(a+(b)^(1/3) )))  x−y=±(√(a−((4b)/(27(a+(b)^(1/3) )))))  x=(a/2)±(1/2)(√(a−((4b)/(27(a+(b)^(1/3) )))))  y=−(a/2)±(1/2)(√(a−((4b)/(27(a+(b)^(1/3) )))))  (√(a+(b)^(1/3) ))  =(((a/2)±(1/2)(√(a−((4b)/(27(a+(b)^(1/3) )))))))^(1/3)  +((−(a/2)±(1/2)(√(a−((4b)/(27(a+(b)^(1/3) )))))))^(1/3)
$$\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}\:=\sqrt[{\mathrm{3}}]{{a}+\sqrt[{\mathrm{3}}]{{b}}} \\ $$$${x}+{y}+\mathrm{3}\sqrt[{\mathrm{3}}]{{xy}}\:\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}\right)={a}+\sqrt[{\mathrm{3}}]{{b}} \\ $$$${x}+{y}={a} \\ $$$$\mathrm{27}{xy}\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}\right)^{\mathrm{3}} ={b} \\ $$$$\mathrm{27}{xy}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)={b} \\ $$$${xy}=\frac{{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)}\:\:\:\:\:\:\:\:\:\left(\:{x}−{y}\right)^{\mathrm{2}} ={a}−\frac{\mathrm{4}{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)} \\ $$$${x}−{y}=\pm\sqrt{{a}−\frac{\mathrm{4}{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)}} \\ $$$${x}=\frac{{a}}{\mathrm{2}}\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}−\frac{\mathrm{4}{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)}} \\ $$$${y}=−\frac{{a}}{\mathrm{2}}\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}−\frac{\mathrm{4}{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)}} \\ $$$$\sqrt{{a}+\sqrt[{\mathrm{3}}]{{b}}} \\ $$$$=\sqrt[{\mathrm{3}}]{\frac{{a}}{\mathrm{2}}\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}−\frac{\mathrm{4}{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)}}}\:+\sqrt[{\mathrm{3}}]{−\frac{{a}}{\mathrm{2}}\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}−\frac{\mathrm{4}{b}}{\mathrm{27}\left({a}+\sqrt[{\mathrm{3}}]{{b}}\right)}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *