Menu Close

f-x-y-f-x-f-y-x-y-and-f-4-10-faind-f-2022-




Question Number 179230 by mathlove last updated on 26/Oct/22
f(x+y)=f(x)+f(y)+x∙y  and f(4)=10  faind  f(2022)=?
$${f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left({y}\right)+{x}\centerdot{y} \\ $$$${and}\:{f}\left(\mathrm{4}\right)=\mathrm{10}\:\:{faind}\:\:{f}\left(\mathrm{2022}\right)=? \\ $$
Answered by mr W last updated on 26/Oct/22
let x=1, y=n−1  f(n)=f(1)+f(n−1)+n−1  f(n−1)=f(1)+f(n−2)+n−2  .....  f(3)=f(1)+f(2)+2  f(2)=f(1)+f(1)+1  Σ:  f(n)=nf(1)+((n(n−1))/2)  f(4)=4f(1)+((4×3)/2)=10  ⇒f(1)=1  ⇒f(n)=n+((n(n−1))/2)=((n(n+1))/2)  f(2022)=((2022×(2022+1))/2)=2045253
$${let}\:{x}=\mathrm{1},\:{y}={n}−\mathrm{1} \\ $$$${f}\left({n}\right)={f}\left(\mathrm{1}\right)+{f}\left({n}−\mathrm{1}\right)+{n}−\mathrm{1} \\ $$$${f}\left({n}−\mathrm{1}\right)={f}\left(\mathrm{1}\right)+{f}\left({n}−\mathrm{2}\right)+{n}−\mathrm{2} \\ $$$$….. \\ $$$${f}\left(\mathrm{3}\right)={f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+\mathrm{2} \\ $$$${f}\left(\mathrm{2}\right)={f}\left(\mathrm{1}\right)+{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$$\Sigma: \\ $$$${f}\left({n}\right)={nf}\left(\mathrm{1}\right)+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{4}{f}\left(\mathrm{1}\right)+\frac{\mathrm{4}×\mathrm{3}}{\mathrm{2}}=\mathrm{10} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\Rightarrow{f}\left({n}\right)={n}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${f}\left(\mathrm{2022}\right)=\frac{\mathrm{2022}×\left(\mathrm{2022}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{2045253} \\ $$
Commented by Acem last updated on 27/Oct/22
1st: Why did you do the sum? as long as f(4)=10   doesn′t give us that it is like another function    which compts the descending sum of it variable.   We can′t know that unless we calculate some   values then we can notice that   f(x+y)= g(x,y)= (((x+y)(x+y+1))/2)     2nd: 1+2+3+...+ (n−1)= ((n(n−1))/2) so what′s   about sum of f(1)+f(2)+... f(n−1)     3rd: The sum you made dosen′t represents the    main function. The f(4)+f(5)+...f(n)    is something else...   We have f(x+y)....like f(16), f(36)...etc
$$\mathrm{1}{st}:\:{Why}\:{did}\:{you}\:{do}\:{the}\:{sum}?\:{as}\:{long}\:{as}\:{f}\left(\mathrm{4}\right)=\mathrm{10} \\ $$$$\:{doesn}'{t}\:{give}\:{us}\:{that}\:{it}\:{is}\:{like}\:{another}\:{function}\: \\ $$$$\:{which}\:{compts}\:{the}\:{descending}\:{sum}\:{of}\:{it}\:{variable}. \\ $$$$\:{We}\:{can}'{t}\:{know}\:{that}\:{unless}\:{we}\:{calculate}\:{some} \\ $$$$\:{values}\:{then}\:{we}\:{can}\:{notice}\:{that} \\ $$$$\:{f}\left({x}+{y}\right)=\:{g}\left({x},{y}\right)=\:\frac{\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\: \\ $$$$\mathrm{2}{nd}:\:\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\:\left({n}−\mathrm{1}\right)=\:\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}\:{so}\:{what}'{s} \\ $$$$\:{about}\:{sum}\:{of}\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+…\:{f}\left({n}−\mathrm{1}\right) \\ $$$$\: \\ $$$$\mathrm{3}{rd}:\:{The}\:{sum}\:{you}\:{made}\:{dosen}'{t}\:{represents}\:{the} \\ $$$$\:\:{main}\:{function}.\:{The}\:{f}\left(\mathrm{4}\right)+{f}\left(\mathrm{5}\right)+…{f}\left({n}\right)\: \\ $$$$\:{is}\:{something}\:{else}… \\ $$$$\:{We}\:{have}\:{f}\left({x}+{y}\right)….{like}\:{f}\left(\mathrm{16}\right),\:{f}\left(\mathrm{36}\right)…{etc} \\ $$$$ \\ $$
Commented by DvMc last updated on 27/Oct/22
For your second point... I believe that   in the response only was replacing   the value of f(n−i) in f(n−i+1)...
$${For}\:{your}\:{second}\:{point}…\:{I}\:{believe}\:{that}\: \\ $$$${in}\:{the}\:{response}\:{only}\:{was}\:{replacing}\: \\ $$$${the}\:{value}\:{of}\:{f}\left({n}−{i}\right)\:{in}\:{f}\left({n}−{i}+\mathrm{1}\right)…\: \\ $$
Commented by mathlove last updated on 27/Oct/22
thanks
$${thanks} \\ $$
Commented by mr W last updated on 27/Oct/22
i transfered the question to following  recursive sequence:  a_n =a_1 +a_(n−1) +n−1  so we have  a_(n−1) =a_1 +a_(n−2) +n−2  a_(n−2) =a_1 +a_(n−3) +n−3  ....  a_3 =a_1 +a_2 +2  a_2 =a_1 +a_1 +1  sum all:  a_n +a_(n−1) +a_(n−2) +...+a_3 +a_2 =na_1 +a_(n−1) +a_(n−2) +...+a_3 +a_2 +((n(n−1))/2)  ⇒a_n =na_1 +((n(n−1))/2)
$${i}\:{transfered}\:{the}\:{question}\:{to}\:{following} \\ $$$${recursive}\:{sequence}: \\ $$$${a}_{{n}} ={a}_{\mathrm{1}} +{a}_{{n}−\mathrm{1}} +{n}−\mathrm{1} \\ $$$${so}\:{we}\:{have} \\ $$$${a}_{{n}−\mathrm{1}} ={a}_{\mathrm{1}} +{a}_{{n}−\mathrm{2}} +{n}−\mathrm{2} \\ $$$${a}_{{n}−\mathrm{2}} ={a}_{\mathrm{1}} +{a}_{{n}−\mathrm{3}} +{n}−\mathrm{3} \\ $$$$…. \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +\mathrm{2} \\ $$$${a}_{\mathrm{2}} ={a}_{\mathrm{1}} +{a}_{\mathrm{1}} +\mathrm{1} \\ $$$${sum}\:{all}: \\ $$$${a}_{{n}} +\cancel{{a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} +…+{a}_{\mathrm{3}} +{a}_{\mathrm{2}} }={na}_{\mathrm{1}} +\cancel{{a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} +…+{a}_{\mathrm{3}} +{a}_{\mathrm{2}} }+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{n}} ={na}_{\mathrm{1}} +\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 28/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by FelipeLz last updated on 26/Oct/22
f(x+y) = f(x)+f(y)+xy  x = y = a → f(2a) = 2f(a)+a^2      f(4) = 10   2f(2)+4 = 10  f(2) = 3     f(10) = f(8)+f(2)+16 = 2f(4)+f(2)+32 = 55  f(20) = 2f(10)+100 = 210  f(50) = f(40)+f(10)+400 = 2f(20)+f(10)+800 = 1275  f(100) = 2f(50)+2500 = 5050  f(200) = 2f(100)+10000 = 20100  f(500) = f(400)+f(100)+40000 = 2f(200)+f(100)+80000 = 125250  f(1000) = 2f(500)+250000 = 500500  f(2000) = 2f(1000)+1000000 = 2001000     f(2022) = f(2000)+f(22)+44000  f(2022) = 2001000+f(20)+f(2)+40+44000  f(2022) = 2001000+210+3+40+44000  f(2022) = 2045253
$${f}\left({x}+{y}\right)\:=\:{f}\left({x}\right)+{f}\left({y}\right)+{xy} \\ $$$${x}\:=\:{y}\:=\:{a}\:\rightarrow\:{f}\left(\mathrm{2}{a}\right)\:=\:\mathrm{2}{f}\left({a}\right)+{a}^{\mathrm{2}} \\ $$$$\: \\ $$$${f}\left(\mathrm{4}\right)\:=\:\mathrm{10}\: \\ $$$$\mathrm{2}{f}\left(\mathrm{2}\right)+\mathrm{4}\:=\:\mathrm{10} \\ $$$${f}\left(\mathrm{2}\right)\:=\:\mathrm{3} \\ $$$$\: \\ $$$${f}\left(\mathrm{10}\right)\:=\:{f}\left(\mathrm{8}\right)+{f}\left(\mathrm{2}\right)+\mathrm{16}\:=\:\mathrm{2}{f}\left(\mathrm{4}\right)+{f}\left(\mathrm{2}\right)+\mathrm{32}\:=\:\mathrm{55} \\ $$$${f}\left(\mathrm{20}\right)\:=\:\mathrm{2}{f}\left(\mathrm{10}\right)+\mathrm{100}\:=\:\mathrm{210} \\ $$$${f}\left(\mathrm{50}\right)\:=\:{f}\left(\mathrm{40}\right)+{f}\left(\mathrm{10}\right)+\mathrm{400}\:=\:\mathrm{2}{f}\left(\mathrm{20}\right)+{f}\left(\mathrm{10}\right)+\mathrm{800}\:=\:\mathrm{1275} \\ $$$${f}\left(\mathrm{100}\right)\:=\:\mathrm{2}{f}\left(\mathrm{50}\right)+\mathrm{2500}\:=\:\mathrm{5050} \\ $$$${f}\left(\mathrm{200}\right)\:=\:\mathrm{2}{f}\left(\mathrm{100}\right)+\mathrm{10000}\:=\:\mathrm{20100} \\ $$$${f}\left(\mathrm{500}\right)\:=\:{f}\left(\mathrm{400}\right)+{f}\left(\mathrm{100}\right)+\mathrm{40000}\:=\:\mathrm{2}{f}\left(\mathrm{200}\right)+{f}\left(\mathrm{100}\right)+\mathrm{80000}\:=\:\mathrm{125250} \\ $$$${f}\left(\mathrm{1000}\right)\:=\:\mathrm{2}{f}\left(\mathrm{500}\right)+\mathrm{250000}\:=\:\mathrm{500500} \\ $$$${f}\left(\mathrm{2000}\right)\:=\:\mathrm{2}{f}\left(\mathrm{1000}\right)+\mathrm{1000000}\:=\:\mathrm{2001000} \\ $$$$\: \\ $$$${f}\left(\mathrm{2022}\right)\:=\:{f}\left(\mathrm{2000}\right)+{f}\left(\mathrm{22}\right)+\mathrm{44000} \\ $$$${f}\left(\mathrm{2022}\right)\:=\:\mathrm{2001000}+{f}\left(\mathrm{20}\right)+{f}\left(\mathrm{2}\right)+\mathrm{40}+\mathrm{44000} \\ $$$${f}\left(\mathrm{2022}\right)\:=\:\mathrm{2001000}+\mathrm{210}+\mathrm{3}+\mathrm{40}+\mathrm{44000} \\ $$$${f}\left(\mathrm{2022}\right)\:=\:\mathrm{2045253} \\ $$
Commented by mathlove last updated on 27/Oct/22
thanks for all
$${thanks}\:{for}\:{all} \\ $$
Answered by Acem last updated on 27/Oct/22
f(4)= f(2)+f(2)+4= 10 ⇒ f(2)= 3  f(2)= f(1)+f(1)+1= 3    ⇒ f(1)= 1  f(3)= f(1)+f(2)+2= 1+3+2= 6 donc f(3)=6   f(4)= 10   We notice that the function f(x+y) represents   the descending sum of the sum of it two variables i.e.   x+y= 4→ 4+3 +2 +1= 10   x+y= 3→ 3+2+1=6 ....etc   i.e.  f(x+y)= g(x,y)= (1/2) (x+y)(x+y+1)   And f(2022)= 2 045 253
$${f}\left(\mathrm{4}\right)=\:{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{2}\right)+\mathrm{4}=\:\mathrm{10}\:\Rightarrow\:\boldsymbol{{f}}\left(\mathrm{2}\right)=\:\mathrm{3} \\ $$$${f}\left(\mathrm{2}\right)=\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{1}\right)+\mathrm{1}=\:\mathrm{3}\:\:\:\:\Rightarrow\:\boldsymbol{{f}}\left(\mathrm{1}\right)=\:\mathrm{1} \\ $$$${f}\left(\mathrm{3}\right)=\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+\mathrm{2}=\:\mathrm{1}+\mathrm{3}+\mathrm{2}=\:\mathrm{6}\:{donc}\:\boldsymbol{{f}}\left(\mathrm{3}\right)=\mathrm{6} \\ $$$$\:\boldsymbol{{f}}\left(\mathrm{4}\right)=\:\mathrm{10} \\ $$$$\:{We}\:{notice}\:{that}\:{the}\:{function}\:{f}\left({x}+{y}\right)\:{represents} \\ $$$$\:{the}\:{descending}\:{sum}\:{of}\:{the}\:{sum}\:{of}\:{it}\:{two}\:{variables}\:{i}.{e}. \\ $$$$\:{x}+{y}=\:\mathrm{4}\rightarrow\:\mathrm{4}+\mathrm{3}\:+\mathrm{2}\:+\mathrm{1}=\:\mathrm{10} \\ $$$$\:{x}+{y}=\:\mathrm{3}\rightarrow\:\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{6}\:….{etc} \\ $$$$\:{i}.{e}.\:\:{f}\left({x}+{y}\right)=\:{g}\left({x},{y}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right) \\ $$$$\:{And}\:\boldsymbol{{f}}\left(\mathrm{2022}\right)=\:\mathrm{2}\:\mathrm{045}\:\mathrm{253} \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *