Menu Close

Find-the-area-of-the-triangle-in-the-first-quadrant-between-the-x-and-y-axis-and-the-tangent-to-the-relationship-curve-y-5-x-x-5-and-x-dont-equal-0-at-0-5-




Question Number 179458 by cortano1 last updated on 29/Oct/22
  Find the area of the triangle in the  first quadrant between the x and y  axis and the tangent to the  relationship curve y=(5/x)−(x/5) and x dont  equal 0 at (0,5)
$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{quadrant}\:\mathrm{between}\:\mathrm{the}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\mathrm{axis}\:\mathrm{and}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{relationship}\:\mathrm{curve}\:\mathrm{y}=\frac{\mathrm{5}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{5}}\:\mathrm{and}\:\mathrm{x}\:\mathrm{dont} \\ $$$$\mathrm{equal}\:\mathrm{0}\:\mathrm{at}\:\left(\mathrm{0},\mathrm{5}\right) \\ $$
Commented by Acem last updated on 29/Oct/22
Is the last line implying that the C_f  doesn′t   intersect with the axis y′y “we know that” or that   point of the tangent. So what′s meant by the   “and x ≠ 0 at (0, 5)”
$${Is}\:{the}\:{last}\:{line}\:{implying}\:{that}\:{the}\:{C}_{{f}} \:{doesn}'{t} \\ $$$$\:{intersect}\:{with}\:{the}\:{axis}\:{y}'{y}\:“{we}\:{know}\:{that}''\:{or}\:{that} \\ $$$$\:{point}\:{of}\:{the}\:{tangent}.\:{So}\:{what}'{s}\:{meant}\:{by}\:{the} \\ $$$$\:“{and}\:{x}\:\neq\:\mathrm{0}\:{at}\:\left(\mathrm{0},\:\mathrm{5}\right)'' \\ $$$$\: \\ $$
Commented by cortano1 last updated on 30/Oct/22
in this book like that
$$\mathrm{in}\:\mathrm{this}\:\mathrm{book}\:\mathrm{like}\:\mathrm{that} \\ $$
Answered by DvMc last updated on 29/Oct/22
  We need an lineal ecuation f(x) of   slope m = y′ and that contains the   point P(x,(5/x)−(x/5))     y′=−(5/x^2 )−(1/5)        then  (5/x)−(x/5)=(−(5/x^2 )−(1/5))x+b  (5/x)−(x/5)=−(5/x)−(x/5)+b           ((10)/x)=b   Next  f(x)=(−(5/k^2 )−(1/5))x+((10)/k)   Where k is the x of the original function  in which the tanency is needed  The height of triangle is ((10)/k)  and its base is x when f(x)=0:  0=(−(5/k^2 )−(1/5))x+((10)/k)   x=((10/k)/((25+k^2 )/5k^2 ))=((50k)/(25+k^2 ))     So, the area of triangle tangente to y  in x=k is  A=(1/2)×((10)/k)×((50k)/(25+k^2 ))=((250)/(25+k^2 ))
$$ \\ $$$${We}\:{need}\:{an}\:{lineal}\:{ecuation}\:{f}\left({x}\right)\:{of}\: \\ $$$${slope}\:{m}\:=\:{y}'\:{and}\:{that}\:{contains}\:{the}\: \\ $$$${point}\:{P}\left({x},\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}\right) \\ $$$$\: \\ $$$${y}'=−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\:\:\: \\ $$$$\: \\ $$$${then} \\ $$$$\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}=\left(−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\right){x}+{b} \\ $$$$\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}=−\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}+{b}\:\:\:\:\:\:\:\:\: \\ $$$$\frac{\mathrm{10}}{{x}}={b} \\ $$$$\:{Next} \\ $$$${f}\left({x}\right)=\left(−\frac{\mathrm{5}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\right){x}+\frac{\mathrm{10}}{{k}}\: \\ $$$${Where}\:{k}\:{is}\:{the}\:{x}\:{of}\:{the}\:{original}\:{function} \\ $$$${in}\:{which}\:{the}\:{tanency}\:{is}\:{needed} \\ $$$${The}\:{height}\:{of}\:{triangle}\:{is}\:\frac{\mathrm{10}}{{k}} \\ $$$${and}\:{its}\:{base}\:{is}\:{x}\:{when}\:{f}\left({x}\right)=\mathrm{0}: \\ $$$$\mathrm{0}=\left(−\frac{\mathrm{5}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\right){x}+\frac{\mathrm{10}}{{k}}\: \\ $$$${x}=\frac{\mathrm{10}/{k}}{\left(\mathrm{25}+{k}^{\mathrm{2}} \right)/\mathrm{5}{k}^{\mathrm{2}} }=\frac{\mathrm{50}{k}}{\mathrm{25}+{k}^{\mathrm{2}} } \\ $$$$\: \\ $$$${So},\:{the}\:{area}\:{of}\:{triangle}\:{tangente}\:{to}\:{y} \\ $$$${in}\:{x}={k}\:{is} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{10}}{{k}}×\frac{\mathrm{50}{k}}{\mathrm{25}+{k}^{\mathrm{2}} }=\frac{\mathrm{250}}{\mathrm{25}+{k}^{\mathrm{2}} }\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *