Menu Close

Question-114541




Question Number 114541 by mnjuly1970 last updated on 19/Sep/20
Answered by abdomsup last updated on 19/Sep/20
A=∫_0 ^1  ((x^2 ln(x))/(1−x^2 ))dx ⇒  A =∫_0 ^1 x^2 ln(x)Σ_(n=0) ^∞  x^(2n) dx  =Σ_(n=0) ^∞   ∫_0 ^1  x^(2n+2)  ln(x)dx  u_n =∫_0 ^(1 )  x^(2n+2) ln(x)dx  =[(x^(2n+3) /(2n+3))ln(x)]_0 ^1 −∫_0 ^1  (x^(2n+2) /(2n+3))dx  =−(1/((2n+3)^2 ))[x^(2n+3) ]_0 ^1  =−(1/((2n+3)^2 ))  ⇒A =−Σ_(n=0) ^(∞ )   (1/((2n+3)^2 ))  =_(n=p−1)  −Σ_(p=1) ^(∞ )  (1/((2p+1)^2 ))  we have Σ_(p=1) ^∞ (1/p^2 ) =(1/4)Σ_(p=1) ^∞ (1/p^2 )  +Σ_(p=0) ^∞  (1/((2p+1)^2 )) ⇒  Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(3/4)×(π^2 /6) =(π^2 /8)  ⇒Σ_(p=1) ^∞  (1/((2p+1)^2 )) =(π^2 /8)−1 ⇒  A =1−(π^2 /8)
$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}} {ln}\left({x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$${A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {ln}\left({x}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} {dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}{n}+\mathrm{2}} \:{ln}\left({x}\right){dx} \\ $$$${u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}\:} \:{x}^{\mathrm{2}{n}+\mathrm{2}} {ln}\left({x}\right){dx} \\ $$$$=\left[\frac{{x}^{\mathrm{2}{n}+\mathrm{3}} }{\mathrm{2}{n}+\mathrm{3}}{ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}+\mathrm{3}}{dx} \\ $$$$=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} }\left[{x}^{\mathrm{2}{n}+\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{A}\:=−\sum_{{n}=\mathrm{0}} ^{\infty\:} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$=_{{n}={p}−\mathrm{1}} \:−\sum_{{p}=\mathrm{1}} ^{\infty\:} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${we}\:{have}\:\sum_{{p}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\sum_{{p}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{p}^{\mathrm{2}} } \\ $$$$+\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\Rightarrow\sum_{{p}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\mathrm{1}\:\Rightarrow \\ $$$${A}\:=\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 19/Sep/20
thank you .very nice..
$${thank}\:{you}\:.{very}\:{nice}.. \\ $$
Commented by mathmax by abdo last updated on 19/Sep/20
you are welcome
$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *