Menu Close

determinant-old-plate-EEU-874-new-plate-1BXK-267-Old-California-license-plate-consisted-of-a-sequence-of-three-letters-followed-by-three-digits-see-figure-above-Assuming-that-any-s




Question Number 131464 by bemath last updated on 05/Feb/21
  determinant (((old plate : EEU 874)),((new plate : 1BXK 267)))  Old California license plate   consisted of a sequence of  three letters followed by three  digits (see figure above).  Assuming that any sequence  of letters and digits was allowed  (though actually some combinations  of letters were disallowed), how  many license plate were   available ?
$$\:\begin{array}{|c|c|}{{old}\:{plate}\::\:{EEU}\:\mathrm{874}}\\{{new}\:{plate}\::\:\mathrm{1}{BXK}\:\mathrm{267}}\\\hline\end{array} \\ $$$${Old}\:{California}\:{license}\:{plate}\: \\ $$$${consisted}\:{of}\:{a}\:{sequence}\:{of} \\ $$$${three}\:{letters}\:{followed}\:{by}\:{three} \\ $$$${digits}\:\left({see}\:{figure}\:{above}\right). \\ $$$${Assuming}\:{that}\:{any}\:{sequence} \\ $$$${of}\:{letters}\:{and}\:{digits}\:{was}\:{allowed} \\ $$$$\left({though}\:{actually}\:{some}\:{combinations}\right. \\ $$$$\left.{of}\:{letters}\:{were}\:{disallowed}\right),\:{how} \\ $$$${many}\:{license}\:{plate}\:{were}\: \\ $$$${available}\:? \\ $$
Answered by mr W last updated on 05/Feb/21
26^3 ×10^3 =260^3 =17 576 000
$$\mathrm{26}^{\mathrm{3}} ×\mathrm{10}^{\mathrm{3}} =\mathrm{260}^{\mathrm{3}} =\mathrm{17}\:\mathrm{576}\:\mathrm{000} \\ $$