Menu Close

For-a-lt-x-lt-b-find-a-b-x-a-b-x-dx-




Question Number 50007 by Joel578 last updated on 13/Dec/18
For a < x < b, find   ∫_a ^b  (√(x−a)) . (√(b−x)) dx
$$\mathrm{For}\:{a}\:<\:{x}\:<\:{b},\:\mathrm{find}\: \\ $$$$\underset{{a}} {\overset{{b}} {\int}}\:\sqrt{{x}−{a}}\:.\:\sqrt{{b}−{x}}\:{dx} \\ $$
Commented by Abdo msup. last updated on 13/Dec/18
changement (√(x−a))=t give x−a=t^2  ⇒  I =∫_0 ^(√(b−a)) t(√(b−(a+t^2 )))2t dt =2∫_0 ^(√(b−a)) t^2 (√(b−a−t^2 ))dt  =_(t=(√(b−a))sinu)   2 ∫_0 ^(π/2)  (b−a)sin^2 u(√(b−a))cosu (√(b−a))cosu du  =2(b−a)^2  ∫_0 ^(π/2)  sin^2 u cos^2 u du  =2(b−a)^2  (1/4) ∫_0 ^(π/2)  sin^2 (2u) du  =(((b−a)^2 )/2) ∫_0 ^(π/2)  ((1−cos(4u))/2) du  =(((b−a)^2 )/4) ∫_0 ^(π/2)   (1−cos(4u))du  =(π/8)(b−a)^2  −(((b−a)^2 )/(16))[sin(4u)]_0 ^(π/2)   ★I=(π/8)(b−a)^2  ★
$${changement}\:\sqrt{{x}−{a}}={t}\:{give}\:{x}−{a}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${I}\:=\int_{\mathrm{0}} ^{\sqrt{{b}−{a}}} {t}\sqrt{{b}−\left({a}+{t}^{\mathrm{2}} \right)}\mathrm{2}{t}\:{dt}\:=\mathrm{2}\int_{\mathrm{0}} ^{\sqrt{{b}−{a}}} {t}^{\mathrm{2}} \sqrt{{b}−{a}−{t}^{\mathrm{2}} }{dt} \\ $$$$=_{{t}=\sqrt{{b}−{a}}{sinu}} \:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({b}−{a}\right){sin}^{\mathrm{2}} {u}\sqrt{{b}−{a}}{cosu}\:\sqrt{{b}−{a}}{cosu}\:{du} \\ $$$$=\mathrm{2}\left({b}−{a}\right)^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} {u}\:{cos}^{\mathrm{2}} {u}\:{du} \\ $$$$=\mathrm{2}\left({b}−{a}\right)^{\mathrm{2}} \:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} \left(\mathrm{2}{u}\right)\:{du} \\ $$$$=\frac{\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left(\mathrm{4}{u}\right)}{\mathrm{2}}\:{du} \\ $$$$=\frac{\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{4}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\left(\mathrm{1}−{cos}\left(\mathrm{4}{u}\right)\right){du} \\ $$$$=\frac{\pi}{\mathrm{8}}\left({b}−{a}\right)^{\mathrm{2}} \:−\frac{\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{16}}\left[{sin}\left(\mathrm{4}{u}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\bigstar{I}=\frac{\pi}{\mathrm{8}}\left({b}−{a}\right)^{\mathrm{2}} \:\bigstar \\ $$
Answered by ajfour last updated on 13/Dec/18
let  x− ((a+b)/2) = t  ∫_(−((b−a)/2)) ^(  ((b−a)/2)) (√(t+((b−a)/2))) (√(((b−a)/2)−t)) dt  let    c = ((b−a)/2)  =∫_(−c) ^(  c) (√(c^2 −t^2 )) dt = 2∫_0 ^(  c) (√(c^2 −t^2 )) dt  = 2[(t/2)(√(c^2 −t^2 ))+(c^2 /2)sin^(−1) (t/c)]_0 ^c   =  ((c^2 π)/2) = (((b−a)^2 π)/8) .
$${let}\:\:{x}−\:\frac{{a}+{b}}{\mathrm{2}}\:=\:{t} \\ $$$$\int_{−\frac{{b}−{a}}{\mathrm{2}}} ^{\:\:\frac{{b}−{a}}{\mathrm{2}}} \sqrt{{t}+\frac{{b}−{a}}{\mathrm{2}}}\:\sqrt{\frac{{b}−{a}}{\mathrm{2}}−{t}}\:{dt} \\ $$$${let}\:\:\:\:{c}\:=\:\frac{{b}−{a}}{\mathrm{2}} \\ $$$$=\int_{−{c}} ^{\:\:{c}} \sqrt{{c}^{\mathrm{2}} −{t}^{\mathrm{2}} }\:{dt}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\:{c}} \sqrt{{c}^{\mathrm{2}} −{t}^{\mathrm{2}} }\:{dt} \\ $$$$=\:\mathrm{2}\left[\frac{{t}}{\mathrm{2}}\sqrt{{c}^{\mathrm{2}} −{t}^{\mathrm{2}} }+\frac{{c}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \frac{{t}}{{c}}\right]_{\mathrm{0}} ^{{c}} \\ $$$$=\:\:\frac{{c}^{\mathrm{2}} \pi}{\mathrm{2}}\:=\:\frac{\left({b}−{a}\right)^{\mathrm{2}} \pi}{\mathrm{8}}\:. \\ $$
Commented by MJS last updated on 13/Dec/18
grea solutiont!
$$\mathrm{grea}\:\mathrm{solutiont}! \\ $$
Commented by ajfour last updated on 13/Dec/18
When we come across matters  that do not require our attention  at this moment, although are  necessary for our conclusion,  then it is better to represent them  by the briefest possible symbols.    - Rene Descartes (Discourse on Method)
$${When}\:{we}\:{come}\:{across}\:{matters} \\ $$$${that}\:{do}\:{not}\:{require}\:{our}\:{attention} \\ $$$${at}\:{this}\:{moment},\:{although}\:{are} \\ $$$${necessary}\:{for}\:{our}\:{conclusion}, \\ $$$${then}\:{it}\:{is}\:{better}\:{to}\:{represent}\:{them} \\ $$$${by}\:{the}\:{briefest}\:{possible}\:{symbols}. \\ $$$$\:\:-\:{Rene}\:{Descartes}\:\left({Discourse}\:{on}\:{Method}\right) \\ $$
Commented by Joel578 last updated on 13/Dec/18
very well Sir
$${very}\:{well}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *