Menu Close

U-0-1-et-U-1-2-U-n-2-U-n-U-n-1-determiner-le-terme-generale-et-sa-nature-besoin-d-aide-avp-




Question Number 181323 by KONE last updated on 24/Nov/22
 { ((U_0 =1 et U_1 =2)),((U_(n+2) =(√(U_n U_(n+1) )))) :}  determiner le terme generale et sa nature  besoin d′aide avp
$$\begin{cases}{{U}_{\mathrm{0}} =\mathrm{1}\:{et}\:{U}_{\mathrm{1}} =\mathrm{2}}\\{{U}_{{n}+\mathrm{2}} =\sqrt{{U}_{{n}} {U}_{{n}+\mathrm{1}} }}\end{cases} \\ $$$${determiner}\:{le}\:{terme}\:{generale}\:{et}\:{sa}\:{nature} \\ $$$${besoin}\:{d}'{aide}\:{avp} \\ $$
Commented by KONE last updated on 24/Nov/22
•svp
$$\bullet{svp} \\ $$
Answered by Frix last updated on 24/Nov/22
u_0 =2^0   u_1 =2^1   u_2 =2^(1/2)   u_3 =2^(3/4)   u_4 =2^(5/8)   ...  let u_n =2^(v_n /2^(n−1) )   v_0 =0  v_1 =1  v_2 =1  v_3 =3  v_4 =5  v_n =2v_(n−2) +v_(n−1)   v_n =((2^n −(−1)^n )/3)  ⇒  u_n =2^((2^n −(−1)^n )/(3×2^(n−1) )) =2^((2/3)(1−(1/((−2)^n ))))   lim_(n→∞)  u_n  =2^(2/3)
$${u}_{\mathrm{0}} =\mathrm{2}^{\mathrm{0}} \\ $$$${u}_{\mathrm{1}} =\mathrm{2}^{\mathrm{1}} \\ $$$${u}_{\mathrm{2}} =\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${u}_{\mathrm{3}} =\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${u}_{\mathrm{4}} =\mathrm{2}^{\frac{\mathrm{5}}{\mathrm{8}}} \\ $$$$… \\ $$$$\mathrm{let}\:{u}_{{n}} =\mathrm{2}^{\frac{{v}_{{n}} }{\mathrm{2}^{{n}−\mathrm{1}} }} \\ $$$${v}_{\mathrm{0}} =\mathrm{0} \\ $$$${v}_{\mathrm{1}} =\mathrm{1} \\ $$$${v}_{\mathrm{2}} =\mathrm{1} \\ $$$${v}_{\mathrm{3}} =\mathrm{3} \\ $$$${v}_{\mathrm{4}} =\mathrm{5} \\ $$$${v}_{{n}} =\mathrm{2}{v}_{{n}−\mathrm{2}} +{v}_{{n}−\mathrm{1}} \\ $$$${v}_{{n}} =\frac{\mathrm{2}^{{n}} −\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$${u}_{{n}} =\mathrm{2}^{\frac{\mathrm{2}^{{n}} −\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}×\mathrm{2}^{{n}−\mathrm{1}} }} =\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{\mathrm{1}}{\left(−\mathrm{2}\right)^{{n}} }\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$
Commented by KONE last updated on 25/Nov/22
merci
$${merci} \\ $$
Answered by mr W last updated on 24/Nov/22
U_(n+2) =(√(U_(n+1) U_n ))  ln U_(n+2) =(1/2)(ln U_(n+1) +ln U_n )  let a_n =ln U_n   2a_(n+2) −a_(n+1) −a_n =0  let a_n =Cp^n   2Cp^(n+2) −Cp^(n+1) −Cp^n =0  Cp^n (2p^2 −p−1)=0  2p^2 −p−1=0  (2p+1)(p−1)=0  ⇒p=−(1/2) or 1  ⇒a_n =C×(−(1/2))^n +D×(1)^n =(C/((−2)^n ))+D  a_0 =ln U_0 =ln 1=0=(C/((−2)^0 ))+D  ⇒C+D=0   ...(i)  a_1 =ln U_1 =ln 2=(C/((−2)^1 ))+D=−(C/2)+D  ⇒−C+2D=2ln 2   ...(ii)  ⇒D=((2ln 2)/3) ⇒C=−((2ln 2)/3)  ⇒a_n =((2ln 2)/3)(1−(((−1)^n )/2^n ))=ln 2^((2/3)(1−(((−1)^n )/2^n )))   ⇒U_n =e^a_n  =2^((2/3)[1−(((−1)^n )/2^n )])  ✓  lim_(n→∞)  U_n =2^(2/3) =(4)^(1/3)
$${U}_{{n}+\mathrm{2}} =\sqrt{{U}_{{n}+\mathrm{1}} {U}_{{n}} } \\ $$$$\mathrm{ln}\:{U}_{{n}+\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{ln}\:{U}_{{n}+\mathrm{1}} +\mathrm{ln}\:{U}_{{n}} \right) \\ $$$${let}\:{a}_{{n}} =\mathrm{ln}\:{U}_{{n}} \\ $$$$\mathrm{2}{a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{1}} −{a}_{{n}} =\mathrm{0} \\ $$$${let}\:{a}_{{n}} ={Cp}^{{n}} \\ $$$$\mathrm{2}{Cp}^{{n}+\mathrm{2}} −{Cp}^{{n}+\mathrm{1}} −{Cp}^{{n}} =\mathrm{0} \\ $$$${Cp}^{{n}} \left(\mathrm{2}{p}^{\mathrm{2}} −{p}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{2}{p}^{\mathrm{2}} −{p}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2}{p}+\mathrm{1}\right)\left({p}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{p}=−\frac{\mathrm{1}}{\mathrm{2}}\:{or}\:\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} ={C}×\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +{D}×\left(\mathrm{1}\right)^{{n}} =\frac{{C}}{\left(−\mathrm{2}\right)^{{n}} }+{D} \\ $$$${a}_{\mathrm{0}} =\mathrm{ln}\:{U}_{\mathrm{0}} =\mathrm{ln}\:\mathrm{1}=\mathrm{0}=\frac{{C}}{\left(−\mathrm{2}\right)^{\mathrm{0}} }+{D} \\ $$$$\Rightarrow{C}+{D}=\mathrm{0}\:\:\:…\left({i}\right) \\ $$$${a}_{\mathrm{1}} =\mathrm{ln}\:{U}_{\mathrm{1}} =\mathrm{ln}\:\mathrm{2}=\frac{{C}}{\left(−\mathrm{2}\right)^{\mathrm{1}} }+{D}=−\frac{{C}}{\mathrm{2}}+{D} \\ $$$$\Rightarrow−{C}+\mathrm{2}{D}=\mathrm{2ln}\:\mathrm{2}\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow{D}=\frac{\mathrm{2ln}\:\mathrm{2}}{\mathrm{3}}\:\Rightarrow{C}=−\frac{\mathrm{2ln}\:\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{2ln}\:\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right)=\mathrm{ln}\:\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right)} \\ $$$$\Rightarrow{U}_{{n}} ={e}^{{a}_{{n}} } =\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}\left[\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right]} \:\checkmark \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} =\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} =\sqrt[{\mathrm{3}}]{\mathrm{4}} \\ $$
Commented by mnjuly1970 last updated on 24/Nov/22
  sir W   ( excuse me )      e^( a_n )  = (4)^(1/3)  . e^( 1−(((−1)^( n) )/2^( n) ))  ???
$$\:\:{sir}\:{W}\:\:\:\left(\:{excuse}\:{me}\:\right) \\ $$$$\:\:\:\:{e}^{\:{a}_{{n}} } \:=\:\sqrt[{\mathrm{3}}]{\mathrm{4}}\:.\:{e}^{\:\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{\:{n}} }{\mathrm{2}^{\:{n}} }} \:??? \\ $$
Commented by mnjuly1970 last updated on 24/Nov/22
  thanks alot sir..     my  mistake      in fact :  a_( n)  = ln(2)^( (2/3) (1−(((−1)^( n) )/2^( n) )))
$$\:\:{thanks}\:{alot}\:{sir}.. \\ $$$$\:\:\:{my}\:\:{mistake} \\ $$$$\:\:\:\:{in}\:{fact}\::\:\:{a}_{\:{n}} \:=\:\mathrm{ln}\left(\mathrm{2}\right)^{\:\frac{\mathrm{2}}{\mathrm{3}}\:\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{\:{n}} }{\mathrm{2}^{\:{n}} }\right)} \\ $$
Commented by mr W last updated on 24/Nov/22
no!   e^a_n  =((4)^(1/3) )^(1−(((−1)^n )/2^n ))
$${no}!\: \\ $$$${e}^{{a}_{{n}} } =\left(\sqrt[{\mathrm{3}}]{\mathrm{4}}\right)^{\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }} \\ $$
Commented by mnjuly1970 last updated on 24/Nov/22
Commented by KONE last updated on 25/Nov/22
merci
$${merci} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *