Question Number 70497 by mr W last updated on 04/Oct/19
Commented by mr W last updated on 04/Oct/19
$${shaded}\:{area}=? \\ $$
Answered by ajfour last updated on 04/Oct/19
Commented by ajfour last updated on 04/Oct/19
$$\:\:\:\:\:\:\mathrm{2}{a}\mathrm{sin}\:\beta={a}\mathrm{sin}\:\alpha\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\left({i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{2}{a}\mathrm{cos}\:\beta−{a}\mathrm{cos}\:\alpha={a}\sqrt{\mathrm{2}}\:\:\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow\:\mathrm{4}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \beta\right)=\mathrm{2}+\mathrm{cos}\:^{\mathrm{2}} \alpha+\mathrm{2}\sqrt{\mathrm{2}}\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\mathrm{4}−\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \alpha\right)=\mathrm{2}+\mathrm{cos}\:^{\mathrm{2}} \alpha+\mathrm{2}\sqrt{\mathrm{2}}\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:,\:\:\mathrm{sin}\:\alpha=\frac{\sqrt{\mathrm{7}}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\mathrm{sin}\:\beta\:=\:\frac{\sqrt{\mathrm{7}}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$$$\:\:{Shaded}\:{area}\:=\:{A} \\ $$$$\:\:\frac{{A}}{\mathrm{4}}=\frac{{a}^{\mathrm{2}} \alpha}{\mathrm{2}}−\frac{\mathrm{4}{a}^{\mathrm{2}} \beta}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\left({a}\sqrt{\mathrm{2}}\right)\left({a}\mathrm{sin}\:\alpha\right) \\ $$$$\:\:{A}\:=\:\mathrm{2}{a}^{\mathrm{2}} \left\{\alpha−\mathrm{4}\beta+\sqrt{\mathrm{2}}\mathrm{sin}\:\alpha\right) \\ $$$$\:{A}\:=\mathrm{50}\left\{\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{7}}}{\mathrm{2}\sqrt{\mathrm{2}}}−\mathrm{4sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{7}}}{\mathrm{4}\sqrt{\mathrm{2}}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\right\}{cm}^{\mathrm{2}} \: \\ $$$$\:\:\:\:\:\:\approx\:\mathrm{29}.\mathrm{27625}\:{cm}^{\mathrm{2}} \:. \\ $$
Commented by mr W last updated on 05/Oct/19
$${thanks}\:{sir}! \\ $$$${we}\:{can}\:{also}\:{get}\:\beta\:{in}\:{this}\:{way}: \\ $$$${a}^{\mathrm{2}} =\left(\mathrm{2}{a}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}{a}\right)^{\mathrm{2}} −\mathrm{2}×\mathrm{2}{a}×\sqrt{\mathrm{2}}{a}\:\mathrm{cos}\:\beta \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{\mathrm{5}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{sin}\:\beta=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$
Commented by ajfour last updated on 05/Oct/19
$${Two}\:{roads}\:{diverged}\:{in}\:{a}\:{wood}, \\ $$$${I}\:{chose}\:{the}\:{one}\:{less}\:{traveled}\:{by}.. \\ $$
Commented by mr W last updated on 05/Oct/19
$${truely},\:{all}\:{roads}\:{lead}\:{to}\:{Rome}! \\ $$