Menu Close

let-p-is-a-polynome-with-degp-n-2-hsving-n-roots-simples-prove-that-k-1-n-1-p-x-k-0-




Question Number 50377 by prof Abdo imad last updated on 16/Dec/18
let p is a polynome with degp=n≥2 hsving n roots  simples prove that Σ_(k=1) ^n  (1/(p^, (x_k ))) =0
$${let}\:{p}\:{is}\:{a}\:{polynome}\:{with}\:{degp}={n}\geqslant\mathrm{2}\:{hsving}\:{n}\:{roots} \\ $$$${simples}\:{prove}\:{that}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{p}^{,} \left({x}_{{k}} \right)}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *