Question Number 50377 by prof Abdo imad last updated on 16/Dec/18
$${let}\:{p}\:{is}\:{a}\:{polynome}\:{with}\:{degp}={n}\geqslant\mathrm{2}\:{hsving}\:{n}\:{roots} \\ $$$${simples}\:{prove}\:{that}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{p}^{,} \left({x}_{{k}} \right)}\:=\mathrm{0} \\ $$