Menu Close

proof-the-existence-of-x-1-x-2-x-n-integr-natural-1-x-1-1-x-2-1-x-n-1-with-x-i-x-j-for-i-j-




Question Number 136032 by mathmax by abdo last updated on 18/Mar/21
proof the existence of  x_1 ,x_2 ,....x_n  integr natural /  (1/x_1 )+(1/x_2 )+...+(1/x_n ) =1  with x_i ≠x_j  for i≠j
$$\mathrm{proof}\:\mathrm{the}\:\mathrm{existence}\:\mathrm{of}\:\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,….\mathrm{x}_{\mathrm{n}} \:\mathrm{integr}\:\mathrm{natural}\:/ \\ $$$$\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{2}} }+…+\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{n}} }\:=\mathrm{1}\:\:\mathrm{with}\:\mathrm{x}_{\mathrm{i}} \neq\mathrm{x}_{\mathrm{j}} \:\mathrm{for}\:\mathrm{i}\neq\mathrm{j} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *