Question Number 181730 by neinhaltsieger369 last updated on 29/Nov/22
Commented by neinhaltsieger369 last updated on 29/Nov/22
$$\:\boldsymbol{\mathrm{Help}}\:-\:\boldsymbol{\mathrm{me}}! \\ $$
Commented by mr W last updated on 29/Nov/22
$${work}={force}×{distance} \\ $$$${so}\:{to}\:{determine}\:{the}\:{work}\:{done},\:{you}\: \\ $$$${should}\:{also}\:{know}\:{the}\:{distance}\:{the}\: \\ $$$${particle}\:{moved}.\:{usually}\:{you}\:{get}\:{the} \\ $$$${distance}\:{from}\:{the}\:{position}\:{vector}\:{of} \\ $$$${the}\:{particle}.\:{for}\:{example} \\ $$$$\boldsymbol{{r}}\left(\boldsymbol{{t}}\right)=\mathrm{2}{t}^{\mathrm{3}} {i}+\mathrm{3}{tj} \\ $$$${then}\:\boldsymbol{{r}}'\left(\boldsymbol{{t}}\right)=\mathrm{6}{ti}+\mathrm{3}{j} \\ $$$${W}=\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{F}}\left(\boldsymbol{{r}}\left(\boldsymbol{{t}}\right)\right)\centerdot\boldsymbol{{r}}'\left(\boldsymbol{{t}}\right){dt} \\ $$$$\:\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left[−\left(\mathrm{2}{t}^{\mathrm{3}} \right)^{\mathrm{2}} ×\mathrm{3}{t}×\mathrm{6}{t}+\mathrm{2}{t}^{\mathrm{3}} ×\left(\mathrm{3}{t}\right)^{\mathrm{2}} ×\mathrm{3}\right]{dt} \\ $$$$\:\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{72}{t}^{\mathrm{8}} +\mathrm{54}{t}^{\mathrm{5}} \right){dt} \\ $$$$\:\:\:\:\:=\left[−\mathrm{8}{t}^{\mathrm{9}} +\mathrm{9}{t}^{\mathrm{6}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\:=−\mathrm{8}+\mathrm{9}=\mathrm{1}\:{J} \\ $$