Menu Close

Question-182006




Question Number 182006 by mr W last updated on 03/Dec/22
Commented by mr W last updated on 03/Dec/22
find the largest area of an inscribed  right−angle triangle in a given acute  triangle with sides a,b,c. (a≥b≥c)
$${find}\:{the}\:{largest}\:{area}\:{of}\:{an}\:{inscribed} \\ $$$${right}−{angle}\:{triangle}\:{in}\:{a}\:{given}\:{acute} \\ $$$${triangle}\:{with}\:{sides}\:{a},{b},{c}.\:\left({a}\geqslant{b}\geqslant{c}\right) \\ $$
Commented by Acem last updated on 03/Dec/22
Interesting one!
$${Interesting}\:{one}! \\ $$
Answered by mr W last updated on 03/Dec/22
Commented by mr W last updated on 03/Dec/22
A_(max) =((a^2  sin γ cos γ)/2)=((a^2  sin 2γ)/4)
$${A}_{{max}} =\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\gamma\:\mathrm{cos}\:\gamma}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{4}} \\ $$
Commented by Acem last updated on 03/Dec/22
The 2nd one_(below) = ((a^2  sin β cos β)/2)= ((a^2  sin 2β)/4)   β> γ then the 2nd triangle is larger than the 1st
$${The}\:\mathrm{2}{nd}\:{one}_{{below}} =\:\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\beta\:\mathrm{cos}\:\beta}{\mathrm{2}}=\:\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\beta}{\mathrm{4}} \\ $$$$\:\beta>\:\gamma\:{then}\:{the}\:\mathrm{2}{nd}\:{triangle}\:{is}\:{larger}\:{than}\:{the}\:\mathrm{1}{st} \\ $$
Commented by mr W last updated on 03/Dec/22
don′t you see that β>γ doesn′t   automatically mean that the second   triangle is larger than the first one?   look at the diagram below.
$${don}'{t}\:{you}\:{see}\:{that}\:\beta>\gamma\:{doesn}'{t}\: \\ $$$${automatically}\:{mean}\:{that}\:{the}\:{second}\: \\ $$$${triangle}\:{is}\:{larger}\:{than}\:{the}\:{first}\:{one}?\: \\ $$$${look}\:{at}\:{the}\:{diagram}\:{below}. \\ $$
Commented by mr W last updated on 03/Dec/22
Commented by mr W last updated on 03/Dec/22
Commented by mr W last updated on 03/Dec/22
this picture shows that the first  triangle (=((a^2  sin 2γ)/4)) is always larger  than the second one (=((a^2 sin 2β)/4)).
$${this}\:{picture}\:{shows}\:{that}\:{the}\:{first} \\ $$$${triangle}\:\left(=\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{4}}\right)\:{is}\:{always}\:{larger} \\ $$$${than}\:{the}\:{second}\:{one}\:\left(=\frac{{a}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\beta}{\mathrm{4}}\right). \\ $$
Commented by Acem last updated on 03/Dec/22
Commented by Acem last updated on 03/Dec/22
We may say here that △MAC > BAN   It′s ok But, Area_(MAC)  = (1/2) b ∣AM∣= (1/2) b^( 2)  tan γ   So how can we judge? cause all your posts made   me think that the maximum area is when the   right angle be on the 2nd side “middle length” &   the hypotenuse is whole of the side “a” with   a formula ((a^2  sin 2γ)/4)  ∣^( ?)  (1/2) b^( 2)  tan γ    Note: I thought through diagram 1 that you say   that there′s 2 triangles as maximum
$${We}\:{may}\:{say}\:{here}\:{that}\:\bigtriangleup{MAC}\:>\:{BAN} \\ $$$$\:{It}'{s}\:{ok}\:{But},\:{Area}_{{MAC}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{b}\:\mid{AM}\mid=\:\frac{\mathrm{1}}{\mathrm{2}}\:{b}^{\:\mathrm{2}} \:\mathrm{tan}\:\gamma \\ $$$$\:{So}\:{how}\:{can}\:{we}\:{judge}?\:{cause}\:{all}\:{your}\:{posts}\:{made} \\ $$$$\:{me}\:{think}\:{that}\:{the}\:{maximum}\:{area}\:{is}\:{when}\:{the} \\ $$$$\:{right}\:{angle}\:{be}\:{on}\:{the}\:\mathrm{2}{nd}\:{side}\:“{middle}\:{length}''\:\& \\ $$$$\:{the}\:{hypotenuse}\:{is}\:{whole}\:{of}\:{the}\:{side}\:“{a}''\:{with} \\ $$$$\:{a}\:{formula}\:\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{4}}\:\:\overset{\:?} {\mid}\:\frac{\mathrm{1}}{\mathrm{2}}\:{b}^{\:\mathrm{2}} \:\mathrm{tan}\:\gamma \\ $$$$ \\ $$$${Note}:\:{I}\:{thought}\:{through}\:{diagram}\:\mathrm{1}\:{that}\:{you}\:{say} \\ $$$$\:{that}\:{there}'{s}\:\mathrm{2}\:{triangles}\:{as}\:{maximum} \\ $$
Commented by Acem last updated on 04/Dec/22
I back to your question, you mentioned that it is   an acute triangle, well can now say? :   For  a≥ b ≥ c   then:   maximum  { ((in an cute tri.      ((a^2  sin 2γ)/4))),((in obtuse tri.       ((b^2  tan γ)/2)  _(You agree?) )) :}
$${I}\:{back}\:{to}\:{your}\:{question},\:{you}\:{mentioned}\:{that}\:{it}\:{is} \\ $$$$\:{an}\:{acute}\:{triangle},\:{well}\:{can}\:{now}\:{say}?\:: \\ $$$$\:{For}\:\:{a}\geqslant\:{b}\:\geqslant\:{c}\:\:\:{then}: \\ $$$$\:{maximum}\:\begin{cases}{{in}\:{an}\:{cute}\:{tri}.\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\gamma}{\mathrm{4}}}\\{{in}\:{obtuse}\:{tri}.\:\:\:\:\:\:\:\frac{{b}^{\mathrm{2}} \:\mathrm{tan}\:\gamma}{\mathrm{2}}\:\:_{{You}\:{agree}?} }\end{cases} \\ $$$$ \\ $$
Commented by mr W last updated on 04/Dec/22
agree.
$${agree}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *