Menu Close

x-y-9-x-y-8-33-2-x-gt-y-x-y-Z-x-y-y-x-mod-1000-




Question Number 50987 by naka3546 last updated on 23/Dec/18
(√(x + y + 9))  +  (√(x − y + 8))  =  33^2   x > y  x, y  ∈  Z^+   (x^y  + y^x )  mod  (1000)  =  ?
$$\sqrt{{x}\:+\:{y}\:+\:\mathrm{9}}\:\:+\:\:\sqrt{{x}\:−\:{y}\:+\:\mathrm{8}}\:\:=\:\:\mathrm{33}^{\mathrm{2}} \\ $$$${x}\:>\:{y} \\ $$$${x},\:{y}\:\:\in\:\:\mathbb{Z}^{+} \\ $$$$\left({x}^{{y}} \:+\:{y}^{{x}} \right)\:\:{mod}\:\:\left(\mathrm{1000}\right)\:\:=\:\:? \\ $$
Commented by Rasheed.Sindhi last updated on 23/Dec/18
No unique answer.  For example:  x=320,y=247       (320^(247) +247^(320) )mod 1000=401                        AND  x=336,y=280       (336^(280) +280^(336) )mod 1000=176
$${No}\:{unique}\:{answer}. \\ $$$${For}\:{example}: \\ $$$${x}=\mathrm{320},{y}=\mathrm{247} \\ $$$$\:\:\:\:\:\left(\mathrm{320}^{\mathrm{247}} +\mathrm{247}^{\mathrm{320}} \right){mod}\:\mathrm{1000}=\mathrm{401} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{AND} \\ $$$${x}=\mathrm{336},{y}=\mathrm{280} \\ $$$$\:\:\:\:\:\left(\mathrm{336}^{\mathrm{280}} +\mathrm{280}^{\mathrm{336}} \right){mod}\:\mathrm{1000}=\mathrm{176} \\ $$
Commented by naka3546 last updated on 23/Dec/18
sorry,  I  have  edited  my  post.
$${sorry},\:\:{I}\:\:{have}\:\:{edited}\:\:{my}\:\:{post}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *