Menu Close

Let-A-1-p-2-p-2-p-2-p-p-1-p-2-p-p-2-p-1-where-p-is-any-prime-number-Prove-that-for-any-value-of-p-however-we-split-this-set-into-two-disjunctive-sets-the-arithmetic-means-of-




Question Number 182203 by depressiveshrek last updated on 05/Dec/22
Let A={1^(p^2 −p) , 2^(p^2 −p) ,..., (p−1)^(p^2 −p) , p^2 −p+1}  where p is any prime number  Prove that for any value of p,  however we split this set into two  disjunctive sets, the arithmetic  means of all elements of both sets  cannot be equal to each other.
$${Let}\:{A}=\left\{\mathrm{1}^{{p}^{\mathrm{2}} −{p}} ,\:\mathrm{2}^{{p}^{\mathrm{2}} −{p}} ,…,\:\left({p}−\mathrm{1}\right)^{{p}^{\mathrm{2}} −{p}} ,\:{p}^{\mathrm{2}} −{p}+\mathrm{1}\right\} \\ $$$${where}\:{p}\:{is}\:{any}\:{prime}\:{number} \\ $$$${Prove}\:{that}\:{for}\:{any}\:{value}\:{of}\:{p}, \\ $$$${however}\:{we}\:{split}\:{this}\:{set}\:{into}\:{two} \\ $$$${disjunctive}\:{sets},\:{the}\:{arithmetic} \\ $$$${means}\:{of}\:{all}\:{elements}\:{of}\:{both}\:{sets} \\ $$$${cannot}\:{be}\:{equal}\:{to}\:{each}\:{other}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *