Menu Close

0-2-0-3-0-4-e-x-y-z-dx-dy-dz-




Question Number 182348 by mathlove last updated on 08/Dec/22
∫_0 ^2 ∫_0 ^3 ∫_0 ^4 e^(x+y+z) dx dy dz=?
$$\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}} \int_{\mathrm{0}} ^{\mathrm{4}} {e}^{{x}+{y}+{z}} {dx}\:{dy}\:{dz}=? \\ $$
Answered by CrispyXYZ last updated on 08/Dec/22
=∫_0 ^2 ∫_0 ^3 (e^4 −1)e^(y+z)  dy dz  =∫_0 ^2 (e^4 −1)(e^3 −1)e^z  dz  =(e^4 −1)(e^3 −1)(e^2 −1)  ≈6535.68
$$=\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}} \left({e}^{\mathrm{4}} −\mathrm{1}\right){e}^{{y}+{z}} \:{dy}\:{dz} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \left({e}^{\mathrm{4}} −\mathrm{1}\right)\left({e}^{\mathrm{3}} −\mathrm{1}\right){e}^{{z}} \:{dz} \\ $$$$=\left({e}^{\mathrm{4}} −\mathrm{1}\right)\left({e}^{\mathrm{3}} −\mathrm{1}\right)\left({e}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\approx\mathrm{6535}.\mathrm{68} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *