Menu Close

what-the-value-of-i-




Question Number 116822 by bemath last updated on 07/Oct/20
 what the value of (√i) =?
$$\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{{i}}\:=? \\ $$
Commented by Dwaipayan Shikari last updated on 07/Oct/20
(√i)=((√((2i)/2)))=(1/( (√2)))(√((1+2i+i^2 )))=±(1/( (√2)))(1+i)
$$\sqrt{{i}}=\left(\sqrt{\frac{\mathrm{2}{i}}{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{\left(\mathrm{1}+\mathrm{2}{i}+{i}^{\mathrm{2}} \right)}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$
Answered by floor(10²Eta[1]) last updated on 07/Oct/20
(√i)=(√e^((iπ)/2) )=e^((iπ)/4) =cos((π/4))+isin((π/4))  =((√2)/2)(1+i)  another solution:  (√i)=a+bi  i=a^2 −b^2 +2abi  ⇒a^2 −b^2 =0, 2abi=i  ⇒a^2 =b^2   ⇒ab=(1/2)∴a^2 b^2 =(1/4)  a^4 =(1/4)⇒a=((√2)/2)=b  ⇒(√i)=((√2)/2)(1+i)
$$\sqrt{\mathrm{i}}=\sqrt{\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}}} }=\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} =\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$$$\mathrm{another}\:\mathrm{solution}: \\ $$$$\sqrt{\mathrm{i}}=\mathrm{a}+\mathrm{bi} \\ $$$$\mathrm{i}=\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\mathrm{2abi} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{0},\:\mathrm{2abi}=\mathrm{i} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{ab}=\frac{\mathrm{1}}{\mathrm{2}}\therefore\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{a}^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\mathrm{a}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\mathrm{b} \\ $$$$\Rightarrow\sqrt{\mathrm{i}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$$$ \\ $$
Commented by bemath last updated on 07/Oct/20
gave kudos
$$\mathrm{gave}\:\mathrm{kudos} \\ $$
Answered by 1549442205PVT last updated on 07/Oct/20
i=cos((π/2)+2kπ)+isin((π/2)+2kπ)=e^(i((π/2)+2kπ)) ⇒(√i)=(i)^(1/2) =e^(i((π/4)+kπ)) (k=0,1)  =cos((π/4)+kπ)+isin((π/4)+kπ) (k=0,1)  i)k=0⇒(√i)=((√2)/2)(1+i)  ii)k=1⇒(√i)=−((√2)/4)(1+i)
$$\mathrm{i}=\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right)=\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right)} \Rightarrow\sqrt{\mathrm{i}}=\left(\mathrm{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\right)} \left(\mathrm{k}=\mathrm{0},\mathrm{1}\right) \\ $$$$=\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{4}}+\mathrm{k}\pi\right)\:\left(\mathrm{k}=\mathrm{0},\mathrm{1}\right) \\ $$$$\left.\mathrm{i}\right)\mathrm{k}=\mathrm{0}\Rightarrow\sqrt{\mathrm{i}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$$$\left.\mathrm{ii}\right)\mathrm{k}=\mathrm{1}\Rightarrow\sqrt{\mathrm{i}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{i}\right) \\ $$
Commented by bemath last updated on 07/Oct/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by 1549442205PVT last updated on 07/Oct/20
Thank Sir.You are welcome
$$\mathrm{Thank}\:\mathrm{Sir}.\mathrm{You}\:\mathrm{are}\:\mathrm{welcome} \\ $$
Answered by malwaan last updated on 07/Oct/20
(√i) = (√(((1/( (√2))))^2 + i + ((i/( (√2))))^2 ))   = (√(((1/( (√2))) + (i/( (√2))))^2 ))   = ± ((1/( (√2))) + (i/( (√2)))) = (1/( (√2)))(1+i)  =±((√2)/2)(1+i)  another method  i=[1 ; (π/2)]  ⇒(√i) = [(√1) ; (((π/2) +2kπ)/2)] ; k=0 ; 1  k=0⇒[1 ; (π/4)]=cos(π/4) + isin(π/4)   = ((√2)/2) + i((√2)/2) = ((√2)/2)(1+i)  k=1⇒[1 ; ((5π)/4)]=cos((5π)/4)+isin((5π)/4)  = − ((√2)/2) − i((√2)/2) = − ((√2)/2)(1+i)  ∴ (√i) = ±((√2)/2)(1+i)
$$\sqrt{{i}}\:=\:\sqrt{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\:{i}\:+\:\left(\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} } \\ $$$$\:=\:\sqrt{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }\: \\ $$$$=\:\pm\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$$$=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$${another}\:{method} \\ $$$${i}=\left[\mathrm{1}\:;\:\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow\sqrt{{i}}\:=\:\left[\sqrt{\mathrm{1}}\:;\:\frac{\frac{\pi}{\mathrm{2}}\:+\mathrm{2}{k}\pi}{\mathrm{2}}\right]\:;\:{k}=\mathrm{0}\:;\:\mathrm{1} \\ $$$${k}=\mathrm{0}\Rightarrow\left[\mathrm{1}\:;\:\frac{\pi}{\mathrm{4}}\right]={cos}\frac{\pi}{\mathrm{4}}\:+\:{isin}\frac{\pi}{\mathrm{4}} \\ $$$$\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\:{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$${k}=\mathrm{1}\Rightarrow\left[\mathrm{1}\:;\:\frac{\mathrm{5}\pi}{\mathrm{4}}\right]={cos}\frac{\mathrm{5}\pi}{\mathrm{4}}+{isin}\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$$$=\:−\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\:{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\:−\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$$$\therefore\:\sqrt{{i}}\:=\:\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+{i}\right) \\ $$
Commented by bemath last updated on 07/Oct/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *