Menu Close

Question-182375




Question Number 182375 by Acem last updated on 08/Dec/22
Commented by Acem last updated on 08/Dec/22
 I just solved it, 2 sec ago,    φ ∈ ]20, 27[   Btw extend of NA intersects with extend of PC   at point ∈ this circle   Hope you success to find φ !
$$\:{I}\:{just}\:{solved}\:{it},\:\mathrm{2}\:{sec}\:{ago},\: \\ $$$$\left.\:\phi\:\in\:\right]\mathrm{20},\:\mathrm{27}\left[\right. \\ $$$$\:{Btw}\:{extend}\:{of}\:{NA}\:{intersects}\:{with}\:{extend}\:{of}\:{PC} \\ $$$$\:{at}\:{point}\:\in\:{this}\:{circle} \\ $$$$\:{Hope}\:{you}\:{success}\:{to}\:{find}\:\phi\:! \\ $$
Answered by mr W last updated on 08/Dec/22
Commented by Acem last updated on 08/Dec/22
Now your answer is correct! very good and thanks
$${Now}\:{your}\:{answer}\:{is}\:{correct}!\:{very}\:{good}\:{and}\:{thanks} \\ $$
Commented by mr W last updated on 08/Dec/22
cos α=((x^2 +6^2 −4^2 )/(2×6x))=((x^2 +20)/(12x))  cos β=(x/(2×6))=(x/(12))=sin α  (((x^2 +20)/(12x)))^2 +((x/(12)))^2 =1  ((x^4 +40x^2 +400)/x^2 )+x^2 =144  x^4 −52x^2 +200=0  x^2 =26+2(√(119))  cos φ=((((√2)x)^2 −4^2 −6^2 )/(2×4×6))=((x^2 −26)/(24))=((√(119))/(12))  φ=cos^(−1) ((√(119))/(12))≈24.6°
$$\mathrm{cos}\:\alpha=\frac{{x}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }{\mathrm{2}×\mathrm{6}{x}}=\frac{{x}^{\mathrm{2}} +\mathrm{20}}{\mathrm{12}{x}} \\ $$$$\mathrm{cos}\:\beta=\frac{{x}}{\mathrm{2}×\mathrm{6}}=\frac{{x}}{\mathrm{12}}=\mathrm{sin}\:\alpha \\ $$$$\left(\frac{{x}^{\mathrm{2}} +\mathrm{20}}{\mathrm{12}{x}}\right)^{\mathrm{2}} +\left(\frac{{x}}{\mathrm{12}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{40}{x}^{\mathrm{2}} +\mathrm{400}}{{x}^{\mathrm{2}} }+{x}^{\mathrm{2}} =\mathrm{144} \\ $$$${x}^{\mathrm{4}} −\mathrm{52}{x}^{\mathrm{2}} +\mathrm{200}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\mathrm{26}+\mathrm{2}\sqrt{\mathrm{119}} \\ $$$$\mathrm{cos}\:\phi=\frac{\left(\sqrt{\mathrm{2}}{x}\right)^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }{\mathrm{2}×\mathrm{4}×\mathrm{6}}=\frac{{x}^{\mathrm{2}} −\mathrm{26}}{\mathrm{24}}=\frac{\sqrt{\mathrm{119}}}{\mathrm{12}} \\ $$$$\phi=\mathrm{cos}^{−\mathrm{1}} \frac{\sqrt{\mathrm{119}}}{\mathrm{12}}\approx\mathrm{24}.\mathrm{6}° \\ $$
Answered by Acem last updated on 08/Dec/22

Leave a Reply

Your email address will not be published. Required fields are marked *