Menu Close

x-1-x-1-3-dx-




Question Number 51419 by Tawa1 last updated on 26/Dec/18
∫ ((√x)/(1 +  (x)^(1/3) )) dx
$$\int\:\frac{\sqrt{\mathrm{x}}}{\mathrm{1}\:+\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\mathrm{dx} \\ $$
Answered by Smail last updated on 27/Dec/18
let u=(x)^(1/6) ⇒6u^5 du=dx  A=∫((√x)/(1+(x)^(1/3) ))dx=∫(u^3 /(1+u^2 ))(6u^5 du)  =6∫(u^8 /(1+u^2 ))du  u^8 =u^6 (u^2 +1)−u^4 (u^2 +1)+u^2 (u^2 +1)−(u^2 +1)+1  =(u^2 +1)(u^6 −u^4 +u^2 −1)+1  (u^8 /(u^2 +1))=u^6 −u^4 +u^2 −1+(1/(u^2 +1))  A=6((u^7 /7)−(u^5 /5)+(u^3 /3)−u+tan^(−1) (u))+C  =6(((((x)^(1/6) )^7 )/7)−((((x)^(1/6) )^5 )/5)+((((x)^(1/6) )^3 )/3)−(x)^(1/6) +tan^(−1) ((x)^(1/6) ))+C
$${let}\:{u}=\sqrt[{\mathrm{6}}]{{x}}\Rightarrow\mathrm{6}{u}^{\mathrm{5}} {du}={dx} \\ $$$${A}=\int\frac{\sqrt{{x}}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}}}{dx}=\int\frac{{u}^{\mathrm{3}} }{\mathrm{1}+{u}^{\mathrm{2}} }\left(\mathrm{6}{u}^{\mathrm{5}} {du}\right) \\ $$$$=\mathrm{6}\int\frac{{u}^{\mathrm{8}} }{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$${u}^{\mathrm{8}} ={u}^{\mathrm{6}} \left({u}^{\mathrm{2}} +\mathrm{1}\right)−{u}^{\mathrm{4}} \left({u}^{\mathrm{2}} +\mathrm{1}\right)+{u}^{\mathrm{2}} \left({u}^{\mathrm{2}} +\mathrm{1}\right)−\left({u}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{1} \\ $$$$=\left({u}^{\mathrm{2}} +\mathrm{1}\right)\left({u}^{\mathrm{6}} −{u}^{\mathrm{4}} +{u}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{1} \\ $$$$\frac{{u}^{\mathrm{8}} }{{u}^{\mathrm{2}} +\mathrm{1}}={u}^{\mathrm{6}} −{u}^{\mathrm{4}} +{u}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}} \\ $$$${A}=\mathrm{6}\left(\frac{{u}^{\mathrm{7}} }{\mathrm{7}}−\frac{{u}^{\mathrm{5}} }{\mathrm{5}}+\frac{{u}^{\mathrm{3}} }{\mathrm{3}}−{u}+{tan}^{−\mathrm{1}} \left({u}\right)\right)+{C} \\ $$$$=\mathrm{6}\left(\frac{\left(\sqrt[{\mathrm{6}}]{{x}}\right)^{\mathrm{7}} }{\mathrm{7}}−\frac{\left(\sqrt[{\mathrm{6}}]{{x}}\right)^{\mathrm{5}} }{\mathrm{5}}+\frac{\left(\sqrt[{\mathrm{6}}]{{x}}\right)^{\mathrm{3}} }{\mathrm{3}}−\sqrt[{\mathrm{6}}]{{x}}+{tan}^{−\mathrm{1}} \left(\sqrt[{\mathrm{6}}]{{x}}\right)\right)+{C} \\ $$
Commented by Tawa1 last updated on 27/Dec/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *