Menu Close

find-the-range-algrbraically-f-x-x-2-1-




Question Number 70659 by aliesam last updated on 06/Oct/19
find the range algrbraically    f(x)=(√(x^2 −1))
$${find}\:{the}\:{range}\:{algrbraically} \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$
Answered by MJS last updated on 06/Oct/19
(√(x^2 −1))∈R ⇒ x^2 ≥1 ⇒ x≤−1 ∨ x≥1 ⇒  ⇒ D={x∈R∣1≤∣x∣}  (df/dx)=(x/( (√(x^2 −1))))=0 ⇒ no solution for x∈D  −1<x ⇒ (x/( (√(x^2 −1))))<0 ⇒ minimum at the border x=−1  x>1 ⇒ (x/( (√(x^2 −1))))>0 ⇒ minimum at the border x=1  ⇒ range: 0≤f(x)<+∞
$$\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\in\mathbb{R}\:\Rightarrow\:{x}^{\mathrm{2}} \geqslant\mathrm{1}\:\Rightarrow\:{x}\leqslant−\mathrm{1}\:\vee\:{x}\geqslant\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow\:{D}=\left\{{x}\in\mathbb{R}\mid\mathrm{1}\leqslant\mid{x}\mid\right\} \\ $$$$\frac{{df}}{{dx}}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}=\mathrm{0}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:{x}\in{D} \\ $$$$−\mathrm{1}<{x}\:\Rightarrow\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}<\mathrm{0}\:\Rightarrow\:\mathrm{minimum}\:\mathrm{at}\:\mathrm{the}\:\mathrm{border}\:{x}=−\mathrm{1} \\ $$$${x}>\mathrm{1}\:\Rightarrow\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}>\mathrm{0}\:\Rightarrow\:\mathrm{minimum}\:\mathrm{at}\:\mathrm{the}\:\mathrm{border}\:{x}=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{range}:\:\mathrm{0}\leqslant{f}\left({x}\right)<+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *