Question Number 117848 by john santu last updated on 14/Oct/20
![Determine all functions f:R→R such that the equality f([x] y)= f(x) [f(y) ] holds for all x,y ∈R . Here by [x] we denote the greatest integer not exceeding x.](https://www.tinkutara.com/question/Q117848.png)
$${Determine}\:{all}\:{functions}\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${such}\:{that}\:{the}\:{equality}\:{f}\left(\left[{x}\right]\:{y}\right)=\:{f}\left({x}\right)\:\left[{f}\left({y}\right)\:\right] \\ $$$${holds}\:{for}\:{all}\:{x},{y}\:\in\mathbb{R}\:.\:{Here}\:\:{by}\:\left[{x}\right]\:{we}\: \\ $$$${denote}\:{the}\:{greatest}\:{integer}\:{not}\:{exceeding}\:{x}. \\ $$$$ \\ $$