Menu Close

d-dx-log-10-x-




Question Number 70705 by sadimuhmud 136 last updated on 07/Oct/19
(d/dx)(log_(10) x)=?
$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{log}_{\mathrm{10}} \mathrm{x}\right)=? \\ $$
Answered by $@ty@m123 last updated on 07/Oct/19
(d/dx)(((log_e  x.)/(log_e  10)))=(1/(ln 10)).(d/dx)(ln x)  =(1/(ln 10)).(1/x)  =(1/(x.ln 10))
$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{log}_{{e}} \:{x}.}{\mathrm{log}_{{e}} \:\mathrm{10}}\right)=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{10}}.\frac{{d}}{{dx}}\left(\mathrm{ln}\:{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{10}}.\frac{\mathrm{1}}{{x}} \\ $$$$=\frac{\mathrm{1}}{{x}.\mathrm{ln}\:\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *