Question Number 131492 by Ar Brandon last updated on 05/Feb/21
$$\mathrm{sin}^{\mathrm{4}} \frac{\pi}{\mathrm{16}}+\mathrm{sin}^{\mathrm{4}} \frac{\mathrm{3}\pi}{\mathrm{16}}+\mathrm{sin}^{\mathrm{4}} \frac{\mathrm{5}\pi}{\mathrm{16}}+\mathrm{sin}^{\mathrm{4}} \frac{\mathrm{7}\pi}{\mathrm{16}} \\ $$
Answered by Dwaipayan Shikari last updated on 05/Feb/21
$${sin}\frac{\pi}{\mathrm{16}}={cos}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{16}}\right)={cos}\left(\frac{\mathrm{7}\pi}{\mathrm{16}}\right)\:\:\:\:{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{16}}\right)={cos}\left(\frac{\mathrm{5}\pi}{\mathrm{16}}\right) \\ $$$$\Phi={cos}^{\mathrm{4}} \frac{\pi}{\mathrm{16}}+{sin}^{\mathrm{4}} \frac{\pi}{\mathrm{16}}+{sin}^{\mathrm{4}} \frac{\mathrm{3}\pi}{\mathrm{16}}+{cos}^{\mathrm{4}} \frac{\mathrm{3}\pi}{\mathrm{16}} \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \frac{\pi}{\mathrm{8}}\right)+\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \frac{\mathrm{3}\pi}{\mathrm{8}}\right) \\ $$$$=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\left({sin}^{\mathrm{2}} \frac{\pi}{\mathrm{8}}+{sin}^{\mathrm{2}} \frac{\mathrm{3}\pi}{\mathrm{8}}\right)=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\left({sin}^{\mathrm{2}} \frac{\pi}{\mathrm{8}}+{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{8}}\right)=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by Dwaipayan Shikari last updated on 05/Feb/21
$${It}\:{will}\:{be}\:{even}\:{nicer}\:{if}\:{you}\:{take}\:{the}\:{value}\:{of}\:{sin}\left(\frac{\pi}{\mathrm{16}}\right)\:'{s}\: \\ $$$${Separately}\::\left(\:\:\::\right) \\ $$$${sin}\left(\frac{\pi}{\mathrm{16}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}\:\:…. \\ $$
Commented by Ar Brandon last updated on 05/Feb/21
Answered by Ar Brandon last updated on 05/Feb/21