Question Number 53114 by maxmathsup by imad last updated on 17/Jan/19
$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}\:{sin}\left({nx}\right)}{\left({x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:\:{with}\:{n}\:{integr}\:{natural}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{A}_{{n}} \\ $$
Commented by maxmathsup by imad last updated on 18/Jan/19
$$\left.\mathrm{1}\right)\:{changement}\:{x}={nt}\:{give}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{nt}\:{sin}\left({n}^{\mathrm{2}} {t}\right)}{{n}^{\mathrm{4}} \left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{ndt}\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tsin}\left({n}^{\mathrm{2}} {t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\:\Rightarrow \\ $$$$\mathrm{2}{n}^{\mathrm{2}} \:{A}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\:\frac{{tsin}\left({n}^{\mathrm{2}} {t}\right)}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\:={Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}\:{e}^{{in}^{\mathrm{2}} {t}} }{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\right)\:{let}\:{consider}\:{the}\:{complex} \\ $$$${function}\:\varphi\left({z}\right)\:=\frac{{z}\:{e}^{{in}^{\mathrm{2}} {z}} }{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\varphi\left({z}\right)=\frac{{z}\:{e}^{{in}^{\mathrm{2}} {z}} }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i} \\ $$$$\left({doubles}\right)\:{residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \left\{\:\frac{{z}\:{e}^{{in}^{\mathrm{2}} {z}} }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} ={lim}_{{z}\rightarrow{i}} \:\:\frac{\left({e}^{{in}^{\mathrm{2}} {z}} \:+{in}^{\mathrm{2}} {z}\:{e}^{{in}^{\mathrm{2}} {z}} \right)\left({z}+{i}\right)^{\mathrm{2}} −\mathrm{2}\left({z}+{i}\right){z}\:{e}^{{in}^{\mathrm{2}} {z}} }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\left(\left(\mathrm{1}+{in}^{\mathrm{2}} {z}\right)\left({z}+{i}\right)−\mathrm{2}{z}\right){e}^{{in}^{\mathrm{2}} {z}} }{\left({z}+{i}\right)^{\mathrm{3}} }\:=\frac{\left(\left(\mathrm{1}−{n}^{\mathrm{2}} \right)\left(\mathrm{2}{i}\right)−\mathrm{2}{i}\right){e}^{−{n}^{\mathrm{2}} } }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{−\mathrm{2}{in}^{\mathrm{2}} \:{e}^{−{n}^{\mathrm{2}} } }{−\mathrm{8}{i}}\:=\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\:{e}^{−{n}^{\mathrm{2}} \:} \:\Rightarrow\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\:{e}^{−{n}^{\mathrm{2}} } =\frac{{i}\pi{n}^{\mathrm{2}} }{\mathrm{2}}\:{e}^{−{n}^{\mathrm{2}} } \\ $$$$\mathrm{2}{n}^{\mathrm{2}} \:{A}_{{n}} =\frac{\pi{n}^{\mathrm{2}} }{\mathrm{2}}\:{e}^{−{n}^{\mathrm{2}} } \:\Rightarrow\:{A}_{{n}} =\frac{\pi}{\mathrm{4}}\:{e}^{−{n}^{\mathrm{2}} } \:. \\ $$$${we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} =\frac{\pi}{\mathrm{4}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{n}^{\mathrm{2}} } \:\:\:{but}\:\:{n}^{\mathrm{2}} \geqslant{n}\:\Rightarrow−{n}^{\mathrm{2}} \leqslant−{n}\:\Rightarrow{e}^{−{n}^{\mathrm{2}} } \leqslant{e}^{−{n}} \:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \leqslant\frac{\pi}{\mathrm{4}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{1}}{{e}}\right)^{{n}} \:=\frac{\pi}{\mathrm{4}}\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{e}}}\:=\frac{\pi}{\mathrm{4}}\:\frac{{e}}{{e}−\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{0}<\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \:\leqslant\frac{\pi{e}}{\mathrm{4}\left({e}−\mathrm{1}\right)}\:. \\ $$