Menu Close

prove-that-an-angle-inscribe-in-a-semi-circle-is-a-right-angle-Help-




Question Number 184655 by Mastermind last updated on 10/Jan/23
prove that an angle inscribe in a   semi−circle is a right angle.      Help!
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{inscribe}\:\mathrm{in}\:\mathrm{a}\: \\ $$$$\mathrm{semi}−\mathrm{circle}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle}. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Help}! \\ $$
Answered by HeferH last updated on 10/Jan/23
Commented by HeferH last updated on 10/Jan/23
AB^(⌢)  = 180°   ∠ACB = ((AB^(⌢) )/2) = 90° (inscribed angle theorem)
$$\overset{\frown} {{AB}}\:=\:\mathrm{180}° \\ $$$$\:\angle{ACB}\:=\:\frac{\overset{\frown} {{AB}}}{\mathrm{2}}\:=\:\mathrm{90}°\:\left({inscribed}\:{angle}\:{theorem}\right) \\ $$
Commented by HeferH last updated on 10/Jan/23
Commented by HeferH last updated on 10/Jan/23
2α + 2θ + (180°−2θ − β) = 180°   β = 2α
$$\mathrm{2}\alpha\:+\:\mathrm{2}\theta\:+\:\left(\mathrm{180}°−\mathrm{2}\theta\:−\:\beta\right)\:=\:\mathrm{180}° \\ $$$$\:\beta\:=\:\mathrm{2}\alpha\: \\ $$
Commented by Mastermind last updated on 10/Jan/23
What is this one again?
$$\mathrm{What}\:\mathrm{is}\:\mathrm{this}\:\mathrm{one}\:\mathrm{again}? \\ $$
Commented by Mastermind last updated on 10/Jan/23
Thank you BOSS
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{BOSS} \\ $$
Commented by HeferH last updated on 10/Jan/23
Proof of theInscribed angle theorem :)
$$\left.{Proof}\:{of}\:{theInscribed}\:{angle}\:{theorem}\::\right) \\ $$
Commented by Mastermind last updated on 10/Jan/23
Thank you BOSS but i think the  first one is the corrct solution
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{BOSS}\:\mathrm{but}\:\mathrm{i}\:\mathrm{think}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{one}\:\mathrm{is}\:\mathrm{the}\:\mathrm{corrct}\:\mathrm{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *