Menu Close

given-x-n-1-1-3-x-n-x-0-2-proof-that-a-0-lt-x-n-2-n-N-b-x-n-is-decreasing-c-lim-n-x-n-




Question Number 431 by 123456 last updated on 25/Jan/15
given  x_(n+1) =(1/(3−x_n ))  x_0 =2  proof that  a.0<x_n ≤2,n∈N  b.x_n  is decreasing  c.lim_(n→∞) x_n
$$\mathrm{given} \\ $$$${x}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} } \\ $$$${x}_{\mathrm{0}} =\mathrm{2} \\ $$$$\mathrm{proof}\:\mathrm{that} \\ $$$$\mathrm{a}.\mathrm{0}<{x}_{{n}} \leqslant\mathrm{2},{n}\in\mathbb{N} \\ $$$$\mathrm{b}.{x}_{{n}} \:\mathrm{is}\:\mathrm{decreasing} \\ $$$$\boldsymbol{\mathrm{c}}.\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} \\ $$
Answered by prakash jain last updated on 03/Jan/15
If x_(n+1) >2  (1/(3−x_n ))>2 ⇒   3> x_n >(5/2)  If x_(n+1) <0  (1/(3−x_n ))<0 ⇒x_n >3  Hence If 0<x_n ≤2 ⇒ 0<x_(n+1) <2  Since x_0 =2, Result a is proved by induction.  If x_(n+1) <x_n  ⇒−x_(n+1) >−x_n   ⇒3−x_(n+1) >3−x_n ⇒(1/(3−x_(n+1) ))<(1/(3−x_n ))⇒x_(n+2) <x_(n+1)   x_(n+1) <x_n ⇒x_(n+2) <x_(n+1)   x_1 =1,x_0 =2,x_1 <x_0 ⇒x_2 <x_1  ⇒x_3 <x_2   Result b proved by induction.  In the limiting case x_(n+1) =x_n   x_(n+1) =x_n =(1/(3−x_n ))  x_n ^2 −3x_n +1=0  x_n =((3±(√(9−4)))/2)  x_n =((3−(√5))/2)  lim_(n→∞) x_n =((3−(√5))/2)
$$\mathrm{If}\:{x}_{{n}+\mathrm{1}} >\mathrm{2} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} }>\mathrm{2}\:\Rightarrow\:\:\:\mathrm{3}>\:{x}_{{n}} >\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{If}\:{x}_{{n}+\mathrm{1}} <\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} }<\mathrm{0}\:\Rightarrow{x}_{{n}} >\mathrm{3} \\ $$$$\mathrm{Hence}\:\mathrm{If}\:\mathrm{0}<{x}_{{n}} \leqslant\mathrm{2}\:\Rightarrow\:\mathrm{0}<{x}_{{n}+\mathrm{1}} <\mathrm{2} \\ $$$$\mathrm{Since}\:{x}_{\mathrm{0}} =\mathrm{2},\:\mathrm{Result}\:\mathrm{a}\:\mathrm{is}\:\mathrm{proved}\:\mathrm{by}\:\mathrm{induction}. \\ $$$$\mathrm{If}\:{x}_{{n}+\mathrm{1}} <{x}_{{n}} \:\Rightarrow−{x}_{{n}+\mathrm{1}} >−{x}_{{n}} \\ $$$$\Rightarrow\mathrm{3}−{x}_{{n}+\mathrm{1}} >\mathrm{3}−{x}_{{n}} \Rightarrow\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}+\mathrm{1}} }<\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} }\Rightarrow{x}_{{n}+\mathrm{2}} <{x}_{{n}+\mathrm{1}} \\ $$$${x}_{{n}+\mathrm{1}} <{x}_{{n}} \Rightarrow{x}_{{n}+\mathrm{2}} <{x}_{{n}+\mathrm{1}} \\ $$$${x}_{\mathrm{1}} =\mathrm{1},{x}_{\mathrm{0}} =\mathrm{2},{x}_{\mathrm{1}} <{x}_{\mathrm{0}} \Rightarrow{x}_{\mathrm{2}} <{x}_{\mathrm{1}} \:\Rightarrow{x}_{\mathrm{3}} <{x}_{\mathrm{2}} \\ $$$$\mathrm{Result}\:\mathrm{b}\:\mathrm{proved}\:\mathrm{by}\:\mathrm{induction}. \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{limiting}\:\mathrm{case}\:{x}_{{n}+\mathrm{1}} ={x}_{{n}} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} } \\ $$$${x}_{{n}} ^{\mathrm{2}} −\mathrm{3}{x}_{{n}} +\mathrm{1}=\mathrm{0} \\ $$$${x}_{{n}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{4}}}{\mathrm{2}} \\ $$$${x}_{{n}} =\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{x}_{{n}} =\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *