Menu Close

let-U-n-1-nH-n-with-H-n-k-1-n-1-k-study-the-convergence-of-n-1-U-n-2-study-the-convergence-of-n-1-U-n-2-




Question Number 53778 by maxmathsup by imad last updated on 25/Jan/19
let U_n =(1/(nH_n ))    with H_n =Σ_(k=1) ^n  (1/k)  study the convergence of Σ_(n≥1)  U_n   2) study the convergence of Σ_(n≥1) U_n ^2
$${let}\:{U}_{{n}} =\frac{\mathrm{1}}{{nH}_{{n}} }\:\:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} \:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} {U}_{{n}} ^{\mathrm{2}} \\ $$
Commented by maxmathsup by imad last updated on 18/Feb/19
we have H_n =ln(n)+γ +o((1/n)) ⇒nH_n  =nln(n) +nγ +o(1) ⇒  (1/(nH_n )) ∼  (1/(nln(n)+nγ +o(1))) ∼ (1/(n(ln(n)+γ)))  the sequence n→(1/(n(ln(n)+γ)))  is decreasing  positive so Σ U_n   and  ∫_e ^(+∞)    (dx/(x(ln(x)+γ))) have the same nature  changement  ln(x)=t give   ∫_e ^(+∞)   (dx/(x{ln(x)+γ))) =∫_1 ^(+∞)   ((e^t dt)/(e^t (t+γ)))dt  =∫_1 ^(+∞)    (dt/(t+γ))  and this integral diverges ⇒Σ U_n  is divergent ..
$${we}\:{have}\:{H}_{{n}} ={ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{nH}_{{n}} \:={nln}\left({n}\right)\:+{n}\gamma\:+{o}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{nH}_{{n}} }\:\sim\:\:\frac{\mathrm{1}}{{nln}\left({n}\right)+{n}\gamma\:+{o}\left(\mathrm{1}\right)}\:\sim\:\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)+\gamma\right)}\:\:{the}\:{sequence}\:{n}\rightarrow\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)+\gamma\right)} \\ $$$${is}\:{decreasing}\:\:{positive}\:{so}\:\Sigma\:{U}_{{n}} \:\:{and}\:\:\int_{{e}} ^{+\infty} \:\:\:\frac{{dx}}{{x}\left({ln}\left({x}\right)+\gamma\right)}\:{have}\:{the}\:{same}\:{nature} \\ $$$${changement}\:\:{ln}\left({x}\right)={t}\:{give}\:\:\:\int_{{e}} ^{+\infty} \:\:\frac{{dx}}{{x}\left\{{ln}\left({x}\right)+\gamma\right)}\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{{t}} {dt}}{{e}^{{t}} \left({t}+\gamma\right)}{dt} \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}+\gamma}\:\:{and}\:{this}\:{integral}\:{diverges}\:\Rightarrow\Sigma\:{U}_{{n}} \:{is}\:{divergent}\:.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *