Menu Close

calculate-1-3-1-2-x-1-x-dx-with-x-0-t-x-1-e-t-dt-with-x-gt-0-




Question Number 53950 by maxmathsup by imad last updated on 27/Jan/19
 calculate ∫_(1/3) ^(1/2)   Γ(x)Γ(1−x)dx   with Γ(x) =∫_0 ^∞  t^(x−1)  e^(−t) dt    with x>0 .
$$\:{calculate}\:\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right){dx}\:\:\:{with}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:\:\:{with}\:{x}>\mathrm{0}\:. \\ $$
Commented by maxmathsup by imad last updated on 30/Jan/19
we have for  0<x<1   Γ(x).Γ(1−x)=(π/(sin(πx)))(  complments formula) ⇒  ∫_(1/3) ^(1/2)  Γ(x).Γ(1−x)dx =π∫_(1/3) ^(1/2)   (dx/(sin(πx))) =_(πx =t)    π ∫_(π/3) ^(π/2)    (dt/(πsin(t)))  =∫_(π/3) ^(π/2)   (dt/(sint)) =_(tan((t/2))=u)     ∫_(1/( (√3))) ^1    (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) =∫_(1/( (√3))) ^1   (du/u) =[ln∣u∣]_(1/( (√3))) ^1 =−ln((1/( (√3))))  =ln((√3)) .
$${we}\:{have}\:{for}\:\:\mathrm{0}<{x}<\mathrm{1}\:\:\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{{sin}\left(\pi{x}\right)}\left(\:\:{complments}\:{formula}\right)\:\Rightarrow \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right){dx}\:=\pi\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\frac{{dx}}{{sin}\left(\pi{x}\right)}\:=_{\pi{x}\:={t}} \:\:\:\pi\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\pi{sin}\left({t}\right)} \\ $$$$=\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dt}}{{sint}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\:\:\int_{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\int_{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\mathrm{1}} \:\:\frac{{du}}{{u}}\:=\left[{ln}\mid{u}\mid\right]_{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\mathrm{1}} =−{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$$={ln}\left(\sqrt{\mathrm{3}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *